Development of an active targeting liposome encapsulated with high-density colloidal gold for transmission electron microscopy

2010 ◽  
Vol 60 (1) ◽  
pp. 95-99 ◽  
Author(s):  
H. Minematsu ◽  
T. Otani ◽  
T. Oohashi ◽  
M. Hirai ◽  
K. Oie ◽  
...  
2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


2011 ◽  
Vol 675-677 ◽  
pp. 247-250 ◽  
Author(s):  
Yoshio Tanita ◽  
Daiji Matsui ◽  
Hiroshi Fukushima

Micro- and nano-structures of the Cr-Mo electroplated layers were studied mainly by Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and Positron Annihilation Lifetime Spectroscopy (PALS). These electroplated layers which were deposited in Cr-Mo electrolyte containing an organic sulfonic acid, showed surface structures having severe ups and downs of small crystal grains. Both selected area diffraction and dark-field image of TEM confirmed the presence of very small crystal grains of less than 50 nm. These small crystal grains exhibited textured structure when the electrolyte contained an organic sulfonic catalyst. PALS results indicated the presence of high density nano-size voids, and HRTEM analysis confirmed the presence of high density voids of 1 nm to 2 nm in diameter. Size and density of these nano-voids increased with the amount of catalyst in the electrolyte.


1990 ◽  
Vol 216 ◽  
Author(s):  
S.G. Lawson-Jack ◽  
I.P. Jones ◽  
D.J. Williams ◽  
M.G. Astles

ABSTRACTTransmission electron microscopy has been used to assess the defect contents of the various layers and interfaces in (CdHg) Te heterostructures. Examination of cross sectional specimens of these materials suggests that the density of misfit dislocations at the interfaces is related to the layer thicknesses, and that the high density of dislocations which are generated at the GaAs/CdTe interface are effectively prevented from penetrating into the CdHgTe epilayer by a 3um thick buffer layer. The majority of the dislocations in the layers were found to have a Burgers vector b = a/2<110> and either lie approximately parallel or inclined at an angle of ∼ 60° to the interfacial plane.


2011 ◽  
Vol 79 ◽  
pp. 304-308
Author(s):  
Wang Li

We reported our detailed investigation of the microstructure and surface chemistry of nanoporous black Si layers using transmission electron microscopy techniques such as HRTEM, EDS, and EELS. We found that a one-step nanoparticle-catalyzed liquid etch creates deep conical nanovoids. The cones provide the density-graded surface that suppresses reflection. The surface of the as-etched nanoporous black Si is an amorphous Si suboxide (SiOx) produced by the strongly oxidizing nanocatalyzed etch. The c-Si/suboxide interface is rough at the nanometer scale and contains a high density of point defects.


2007 ◽  
Vol 561-565 ◽  
pp. 111-114
Author(s):  
Hui Ping Ren ◽  
Hai Yan Wang ◽  
Zong Chang Liu ◽  
Lin Chen

The precipitation of copper during aging at 650oC within ferrite in high-purity Fe-1.03wt%Cu steel was examined by transmission electron microscopy, and the influence of precipitation particles on property of experimental steel was investigated. The microstructure and the corresponding diffraction patterns of different zone axis were analyzed. Nano-scale copper-rich clusters with B2-like structure and high density dislocation around precipitate was observed during either solution treatment or aging. Nano-scale metastable precipitates and high density around them were found to play the most important role for increasing steel strength.


2016 ◽  
Vol 49 (6) ◽  
pp. 1967-1971 ◽  
Author(s):  
Ke Tong ◽  
Fei Ye ◽  
Honglong Che ◽  
Ming Kai Lei ◽  
Shu Miao ◽  
...  

The nitrogen-supersaturated phase produced by low-temperature plasma-assisted nitriding of austenitic stainless steel usually contains a high density of stacking faults. However, the stacking fault density observed in previous studies was considerably lower than that determined by fitting the X-ray diffraction pattern. In this work, it has been confirmed by high-resolution transmission electron microscopy that the strip-shaped regions of about 3–25 nm in width observed at relatively low magnification essentially consist of a series of stacking faults on every second {111} atomic plane. A microstructure model of the clustered stacking faults embedded in a face-centred cubic structure was built for these regions. The simulated X-ray diffraction and transmission electron microscopy results based on this model are consistent with the observations.


Sign in / Sign up

Export Citation Format

Share Document