Effects of Dietary Fiber and Protein Concentration on Growth, Feed Efficiency, Visceral Organ Weights and Large Intestine Microbial Populations of Swine

1989 ◽  
Vol 119 (6) ◽  
pp. 879-886 ◽  
Author(s):  
Friday O. I. Anugwa ◽  
Vincent H. Varel ◽  
James S. Dickson ◽  
Wilson G. Pond ◽  
Lennart P. Krook
Author(s):  
Jinsu Hong ◽  
Saymore Petros Ndou ◽  
Seidu Adams ◽  
Joy Scaria ◽  
Tofuko Awori Woyengo

Abstract Objective of this study was to determine the interactive effects of dietary fiber solubility and lipid source on growth performance, visceral organ weights, gut histology, and gut microbiota composition of weaned pigs. A total of 280 nursery pigs [initial body weight (BW) = 6.84 kg] weaned at 21 d were housed in 40 pens (7 pigs/pen). The pigs were fed four diets (10 pens/diet) in a randomized complete block design in two phases; Phase 1 from 0 to 2 weeks and Phase 2 from 2 to 5 wk. The diets were corn-soybean meal-based with either sugar beet pulp (SBP) or soybean hulls (SBH) as a fiber source and either soybean oil (SBO) or choice white grease (CWG) as a lipid source in a 2 × 2 factorial arrangement. The BW and feed intake were determined by phase, whereas visceral organ weights, intestinal histology, and gut microbial composition were determined at the end of the trial. Dietary fiber solubility and lipid source did not interact (P > 0.05) on average daily feed intake and average daily gain across all phases. However, the gain to feed ratio (G:F) for CWG-containing diets was lower (P < 0.05) than that for SBO-containing diets for Phase 1. Also, G:F for SBP-containing diets was lower (P < 0.05) than that for SBH-containing diets for Phase 1 and for the entire study period. Pigs fed SBP-containing diets had greater (P < 0.05) stomach weight, and tended to have greater (P < 0.10) small and large intestine weights relative to BW than those fed SBH-containing diets. Duodenal villous height to crypt depth ratio for CWG-based diets tended be greater (P = 0.09) than that for SBO-based diets. Fiber solubility and lipid source interacted (P < 0.05) on relative abundance of Bacteroides in the colon such that the relative abundance of the Bacteroides for CWG was greater (P < 0.05) than that for the SBO in SBP-based diet, but not in SBH-based diet. Relative abundance of Butyricicoccus in the colon for SBH-based diet was greater (P < 0.05) than that for SBP-based diet. In conclusion, inclusion of SBH instead of SBP in corn-soybean meal-based diets for weaned pigs can result in increased feed efficiency and relative abundance of Butyricicoccus in the colon, which is associated with improved gut health. Also, inclusion of SBO instead of CWG in the diets for weaned pigs can result in improved feed efficiency during Phase 1 feeding; however, the pigs may recover from the low feed efficiency induced by dietary inclusion of CWG instead of SBO after Phase 1 feeding.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 355-355
Author(s):  
Jinsu Hong ◽  
Tofuko A Woyengo

Abstract The objective of this study was to determine the interactive effects of dietary fiber source and lipid source on growth performance and visceral organ weights of weaned pigs. Two hundred and eighty 21 days old pigs [initial body weight (BW) = 6.84 kg] were housed in 40 pens (7 pigs/pen). The pigs were fed 4 diets (10 pens/diet) in a randomized complete block design in 2 phases, Phase 1 from day 0 to 14 and Phase 2 from day 14 to 35. The diets were corn-soybean meal-based with either sugar beet pulp (SBP) or soybean hulls (SBH) as fiber source and either soybean oil (SBO) or choice white grease (CWG) as fat source in 2 × 2 factorial arrangement. The BW and feed intake were determined by phase, whereas visceral organ weights were determined on day 35. Fiber source and fat source did not interact on growth performance and organ weights relative to BW. Pigs fed CWG-containing diets had lower (P < 0.05) gain to feed ratio than those fed SBO-containing diets by 7.95% during Phase 1 of feeding. Pigs fed SBP-containing diets had lower (P < 0.05) gain to feed ratio than those fed SBH-containing diets by 7.94% during Phase 1 of feeding. However, pigs fed SBP-containing diets had greater (P < 0.05) stomach weight, and tended to have greater (P < 0.1) heart, small intestine and large intestine weights relative to BW than those fed SBO-containing diets. In conclusion, replacement of SBH with SBP in diets for weaned pigs reduced feed efficiency and increased visceral organ weights relative to BW, implying that the replacement of SBH with SBP in diets of weaned pigs increased energy expenditure in visceral organs. Inclusion of SBO (at the expense of CWG) in diets for weaned pigs can improve feed efficiency.


1997 ◽  
Vol 27 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Peter J. Horvath ◽  
Hiba H. Shuhaiber ◽  
Carol S. Fink ◽  
Atif B. Awad

2020 ◽  
Vol 9 (8) ◽  
pp. e347985005
Author(s):  
Alexandre Bernardi ◽  
Antonio Waldimir Leopoldino da Silva ◽  
Catia Capeletto ◽  
Felipe Junior Portela da Silva ◽  
Renata Cristina Defiltro ◽  
...  

This study compared the effects of unchopped and chopped hay on milk production and composition, feed digestibility, and physiology of Lacaune sheep. Eighteen ewes were stratified by parity (two or three), days of lactation (60 ± 3.7 days), and milk production (1.04 L/ewe/day), and were randomly assigned to 1 of 2 treatments: 1) Unchopped or 2) Chopped Tifton 85 hay. Corn silage and concentrate were also provided. Chopped hay ewes gave lower (P≤0.01) dry matter intake and greater (P=0.02) crude protein digestibility. No effects of treatment were detected (P≥0.38) for the digestibility of dry matter, or of neutral and acid detergent fibers. Chopped hay ewes had greater (P≤0.01) milk production (d 7 and d 12), lactation persistence, and feed efficiency. Ewes eating chopped hay had greater (P=0.03) protein concentration in their milk. However, there were no effects of treatment × day and treatments (P≥0.16) for concentrations of fat, lactose, minerals, deffated dry extract, or density. Ewes eating chopped hay presented lower (P<0.01) serum concentrations of urea and tended to have lower (P=0.10) serum concentrations of glucose only on d 12. However, there were no effects of treatment × day and treatments (P≥0.16) for serum concentrations of total protein, albumin, globulin, triglycerides, or cholesterol. These data suggest that chopped hay promotes lower dry matter intake and serum concentrations of glucose and urea, but improves milk production, lactation persistence, feed efficiency, and protein concentration.


1975 ◽  
Vol 229 (4) ◽  
pp. 1062-1067 ◽  
Author(s):  
JF Wootton ◽  
RA Argenzio

The distribution of nitrogen in ligated segments of the stomach and intestine of two groups of ponies has been examined at sacrifice 2, 4, 8, and 12 h following the final 12-h scheduled feeding of diets designed to provide either 1) ample protein, or 2) limited protein plus supplemental urea as the major nitrogen source. Concentrations and total quantities of total N, NH3, urea plus NH3, and alpha-amino N were determined, and protein N was calculated by difference. Liquid marker (PEG) distribution rate constants and N concentrations were used to calculate rates of entry and exit by digesta flow for the large intestinal compartments. These values, together with measured accumulations of each constituent, allowed assessment of transitory net appearance and net disappearance within each compartment due to processes other than flow along the tract. The data suggested cyclic fluctuations of microbial populations within the large intestine, particularly the dorsal and ventral colon. These segments also were implicated as major sites of microbial protein synthesis and degradation. the former process appeared more evident in animals consuming the urea-supplemented diet.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 382-382
Author(s):  
Obioha N Durunna ◽  
Daalkhaijav Damiran ◽  
John R Campbell ◽  
Jeffery A Carroll ◽  
Bart Lardner

Abstract Breeding feed-efficient cattle can reduce the environmental footprint of beef operations but assessing all replacement candidates for feed-intake is not practical due to cost implications. The main objectives of this study were to evaluate if rumen temperature (RumT), measured with wireless rumen Thermobolus® can distinguish steers with different feed-efficiency profiles and whether steers with divergent efficiency profiles have different nutrient fermentation signatures. The study also validated the relationship between rectal temperature (RecT) and RumT measured with automatic thermistors. Residual feed intake (RFI) profiles of 160 steers were measured over two years. All steers were assessed for RFI profiles using high and moderate forage diets, respectively, over two successive periods each year. Each steer was fitted with a rumen Thermobolus® throughout each ~80-d test period while half of the steers wore an automatic temperature-logger rectal device for ~30d. The devices recorded the RumT and RecT every 5 minutes, respectively. Rumen fluid samples were collected from high-RFI (n = 5) and low-RFI (n = 5) steers to assess if differences in rumen fermentation and microbial profiles exist. Circadian-adjusted RumT and RecT for each steer were used for analysis. The within-period correlations between RumT and RecT ranged between 49 and 77%. There was a trend (P = 0.08) that differences exist for rhythm-adjusted temperatures among different RFI profiles with low-RFI steers (39.72±0.01oC) having lower average RumT than those in high (39.75±0.01oC) or medium (39.74±0.01oC) classes. The correlation between the two test-periods for rhythm-adjusted RumT was 65% while the correlation between RFI from both periods was 47%. There was no difference (P &gt; 0.30) between high- and low-RFI animals for the total or individual volatile fatty acid fractions or microbial populations. The narrow temperature variation among RFI classes limits its use as screening tool but the higher across-period correlation encourages the need for further studies into alternative potential applications.


Sign in / Sign up

Export Citation Format

Share Document