Lipid Metabolism Responses in Rats Fed Beef Tallow, Native or Randomized Fish Oil and Native or Randomized Peanut Oil

1991 ◽  
Vol 121 (7) ◽  
pp. 948-955 ◽  
Author(s):  
Remi De Schrijver ◽  
Daniel Vermeulen ◽  
Elke Viaene
2016 ◽  
Vol 60 (11) ◽  
pp. 2493-2504 ◽  
Author(s):  
Lorraine S. Oliveira ◽  
Luana L. Souza ◽  
Aline F. P. Souza ◽  
Aline Cordeiro ◽  
George E. G. Kluck ◽  
...  

2011 ◽  
Vol 106 (5) ◽  
pp. 633-647 ◽  
Author(s):  
Bente E. Torstensen ◽  
Marit Espe ◽  
Ingunn Stubhaug ◽  
Øyvind Lie

In order to study whether lipid metabolism may be affected by maximum replacement of dietary fish oil and fish meal with vegetable oils (VO) and plant proteins (PP), Atlantic salmon (Salmo salarL.) smolts were fed a control diet containing fish oil and fish meal or one of three plant-based diets through the seawater production phase for 12 months. Diets were formulated to meet all known nutrient requirements. The whole-body lipid storage pattern was measured after 12 months, as well as post-absorptive plasma, VLDL and liver TAG. To further understand the effects on lipid metabolism, expression of genes encoding for proteins involved in VLDL assembly (apoB100), fatty acid uptake (FATP1, cd36, LPL and FABP3, FABP10 and FABP11) were measured in liver and visceral adipose tissue. Maximum dietary VO and PP increased visceral lipid stores, liver TAG, and plasma VLDL and TAG concentrations. Increased plasma TAG correlated with an increased expression of apoB100, indicating increased VLDL assembly in the liver of fish fed the high-plant protein- and VO-based diet. Atlantic salmon fed intermediate replacement levels of VO or PP did not have increased body fat or visceral mass. Overall, the present results demonstrate an interaction between dietary lipids and protein on lipid metabolism, increasing overall adiposity and TAG in the body when fish meal and fish oil are replaced concomitantly at maximised levels of VO and PP.


1989 ◽  
Vol 119 (5) ◽  
pp. 813-817 ◽  
Author(s):  
Vernon Bond ◽  
Oliver Ordor ◽  
Geza Bruckner ◽  
Polly Webb ◽  
Theodore Kotchen ◽  
...  

2010 ◽  
Vol 104 (1) ◽  
pp. 56-66 ◽  
Author(s):  
K. J. Shingfield ◽  
M. R. F. Lee ◽  
D. J. Humphries ◽  
N. D. Scollan ◽  
V. Toivonen ◽  
...  

Based on the potential benefits to human health, there is interest in developing sustainable nutritional strategies to enhance the concentration of long-chainn-3 fatty acids in ruminant-derived foods. Four Aberdeen Angus steers fitted with rumen and duodenal cannulae were used in a 4 × 4 Latin square experiment with 21 d experimental periods to examine the potential of fish oil (FO) in the diet to enhance the supply of 20 : 5n-3 and 22 : 6n-3 available for absorption in growing cattle. Treatments consisted of total mixed rations based on maize silage fed at a rate of 85 g DM/kg live weight0·75/d containing 0, 8, 16 and 24 g FO/kg diet DM. Supplements of FO reduced linearly (P < 0·01) DM intake and shifted (P < 0·01) rumen fermentation towards propionate at the expense of acetate and butyrate. FO in the diet enhanced linearly (P < 0·05) the flow oftrans-16 : 1,trans-18 : 1,trans-18 : 2, 20 : 5n-3 and 22 : 6n-3, and decreased linearly (P < 0·05) 18 : 0 and 18 : 3n-3 at the duodenum. Increases in the flow oftrans-18 : 1 were isomer dependent and were determined primarily by higher amounts oftrans-11 reaching the duodenum. In conclusion, FO alters ruminal lipid metabolism of growing cattle in a dose-dependent manner consistent with an inhibition of ruminal biohydrogenation, and enhances the amount of long-chainn-3 fatty acids at the duodenum, but the increases are marginal due to extensive biohydrogenation in the rumen.


2012 ◽  
Vol 23 (11) ◽  
pp. 1384-1393 ◽  
Author(s):  
Natalya Filipchuk Vigerust ◽  
Daniel Cacabelos ◽  
Lena Burri ◽  
Kjetil Berge ◽  
Hege Wergedahl ◽  
...  

1966 ◽  
Vol 88 (3) ◽  
pp. 255-260 ◽  
Author(s):  
A. I. Fleischman ◽  
H. Yacowitz ◽  
T. Hayton ◽  
M. L. Bierenbaum

Sign in / Sign up

Export Citation Format

Share Document