A histone H4 gene prevents drought-induced bolting in Chinese cabbage by attenuating the expression of flowering genes

Author(s):  
Xiaoyun Xin ◽  
Tongbing Su ◽  
Peirong Li ◽  
Weihong Wang ◽  
Xiuyun Zhao ◽  
...  

Abstract Flowering is an important trait in Chinese cabbage, because premature flowering reduces yield and quality of the harvested products. Water deficit, caused by drought or other environmental conditions, induces early flowering. Drought resistance involves global reprogramming of transcription, hormone signaling, and chromatin modification. We show that a histone H4 protein, BrHIS4.A04, physically interacts with a homeodomain protein BrVIN3.1, which was selected during the domestication of late-bolting Chinese cabbage. Over-expression of BrHIS4.A04 resulted in premature flowering under normal growth conditions, but prevented further premature bolting in response to drought. We show that the expression of key abscisic acid (ABA) signaling genes, and also photoperiodic flowering genes was attenuated in BrHIS4.A04-overexpressing (BrHIS4.A04OE) plants under drought conditions. Furthermore, the relative change in H4-acetylation at these gene loci was reduced in BrHIS4.A04OE plants. We suggest that BrHIS4.A04 prevents premature bolting by attenuating the expression of photoperiodic flowering genes under drought conditions, through the ABA signaling pathway. Since BrHIS4.A04OE plants displayed no phenotype related to vegetative or reproductive development under laboratory-induced drought conditions, our findings contribute to the potential fine-tuning of flowering time in crops through genetic engineering without any growth penalty, although more data are necessary under field drought conditions.

2020 ◽  
Vol 21 (24) ◽  
pp. 9700
Author(s):  
Damiano Martignago ◽  
Beata Siemiatkowska ◽  
Alessandra Lombardi ◽  
Lucio Conti

Plants can react to drought stress by anticipating flowering, an adaptive strategy for plant survival in dry climates known as drought escape (DE). In Arabidopsis, the study of DE brought to surface the involvement of abscisic acid (ABA) in controlling the floral transition. A central question concerns how and in what spatial context can ABA signals affect the floral network. In the leaf, ABA signaling affects flowering genes responsible for the production of the main florigen FLOWERING LOCUS T (FT). At the shoot apex, FD and FD-like transcription factors interact with FT and FT-like proteins to regulate ABA responses. This knowledge will help separate general and specific roles of ABA signaling with potential benefits to both biology and agriculture.


2020 ◽  
Vol 71 (12) ◽  
pp. 3603-3612 ◽  
Author(s):  
Natanella Illouz-Eliaz ◽  
Idan Nissan ◽  
Ido Nir ◽  
Uria Ramon ◽  
Hagai Shohat ◽  
...  

Abstract Low gibberellin (GA) activity in tomato (Solanum lycopersicum) inhibits leaf expansion and reduces stomatal conductance. This leads to lower transpiration and improved water status under transient drought conditions. Tomato has three GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors with overlapping activities and high redundancy. We tested whether mutation in a single GID1 reduces transpiration without affecting growth and productivity. CRISPR-Cas9 gid1 mutants were able to maintain higher leaf water content under water-deficit conditions. Moreover, while gid1a exhibited normal growth, it showed reduced whole-plant transpiration and better recovery from dehydration. Mutation in GID1a inhibited xylem vessel proliferation, which led to lower hydraulic conductance. In stronger GA mutants, we also found reduced xylem vessel expansion. These results suggest that low GA activity affects transpiration by multiple mechanisms: it reduces leaf area, promotes stomatal closure, and reduces xylem proliferation and expansion, and as a result, xylem hydraulic conductance. We further examined if gid1a performs better than the control M82 in the field. Under these conditions, the high redundancy of GID1s was lost and gid1a plants were semi-dwarf, but their productivity was not affected. Although gid1a did not perform better under drought conditions in the field, it exhibited a higher harvest index.


2013 ◽  
Vol 42 (4) ◽  
pp. e24-e24 ◽  
Author(s):  
Li Teng ◽  
Bing He ◽  
Peng Gao ◽  
Long Gao ◽  
Kai Tan

Abstract Combinatorial interactions among transcription factors (TFs) are critical for integrating diverse intrinsic and extrinsic signals, fine-tuning regulatory output and increasing the robustness and plasticity of regulatory systems. Current knowledge about combinatorial regulation is rather limited due to the lack of suitable experimental technologies and bioinformatics tools. The rapid accumulation of ChIP-Seq data has provided genome-wide occupancy maps for a large number of TFs and chromatin modification marks for identifying enhancers without knowing individual TF binding sites. Integration of the two data types has not been researched extensively, resulting in underused data and missed opportunities. We describe a novel method for discovering frequent combinatorial occupancy patterns by multiple TFs at enhancers. Our method is based on probabilistic item set mining and takes into account uncertainty in both types of ChIP-Seq data. By joint analysis of 108 TFs in four human cell types, we found that cell–type-specific interactions among TFs are abundant and that the majority of enhancers have flexible architecture. We show that several families of transposable elements disproportionally overlap with enhancers with combinatorial patterns, suggesting that these transposable element families play an important role in the evolution of combinatorial regulation.


2021 ◽  
Author(s):  
Fengkai Wu ◽  
Ling Liu ◽  
Yan Kang ◽  
Jing Li ◽  
Zhiyu Ma ◽  
...  

The circadian clock perceives photoperiodic changes and initiates processes leading to floral transition. GIGANTEA (GI) primarily functions as a principal clock component that integrates environmental cues into regulation of growth and development in Arabidopsis. However, it is unclear whether ZmGIs regulate photoperiodic flowering and abiotic stress response. Here, we demonstrated that the expression of ZmGI1 depicted a typical circadian pattern and was differentially expressed under LDs and SDs in photoperiodic sensitive and insensitive maize lines. The transcription level was significantly and positively correlated with days to silking and photoperiodic sensitivity in maize. Moreover, natural variation in ZmGI1 was associated with maize photoperiod response and the fine-tuning of plant development traits. Overexpression of ZmGI1Huangzao4 induced early flowering and enhanced salt tolerance in Arabidopsis relative to the wild-type and gi mutants. ZmGI1 formed a protein complex with ZmFKF1 and acted as a positive regulator of flowering time by regulating CONSTANS transcription in the photoperiod pathway. The ZmGI1/ZmThox complex regulates oxidative stress induced by salt stress via a redox balance pathway. Over all, we have provided compelling evidence to suggest that ZmGI1 is a pleotropic gene whose expression depicts a typical circadian rhythmic pattern and regulates flowering time and confers salt stress tolerance.


2003 ◽  
Vol 23 (11) ◽  
pp. 3763-3773 ◽  
Author(s):  
Xiaotao Li ◽  
Jiemin Wong ◽  
Sophia Y. Tsai ◽  
Ming-Jer Tsai ◽  
Bert W. O'Malley

ABSTRACT It is well established that steroid receptor function requires interaction with coactivators. However, the mechanisms through which steroid receptors elicit precise assembly of coactivator complexes and the way the steroid activation signal is transduced remain elusive. Using a T47D cell line stably integrated with a mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter, we demonstrate that specific steroid receptors exhibit preferential recruitment of SRC-1 family coactivators, which determines the subsequent recruitment of specific downstream coregulator molecules. Upon ligand treatment, progesterone receptor (PR) interacted preferentially with SRC-1, which recruited CBP and significantly enhanced acetylation at K5 of histone H4. In contrast, activated glucocorticoid receptor (GR) preferentially associated with SRC-2 (TIF-2/GRIP-1), which subsequently recruited pCAF and led to specific modification of histone H3, suggesting that specific coactivators recruit distinct histone acetyltransferases to modulate the transcription of steroid-responsive genes. Loss-of-function experiments further support the predicted roles of SRC-1 and SRC-2 in, respectively, PR- and GR-mediated transcription on the MMTV promoter. This study indicates that differential recruitment of coactivators by nuclear receptors determines the assembly of coactivator complexes on target promoters to mediate specific transcription signals.


2018 ◽  
Vol 22 (03) ◽  
pp. 77-81
Author(s):  
Otgonsuvd B ◽  
Ouyngerel Sh ◽  
Altanzaya T

Orostachys spinosa L. is a succulent plant native to predominantly East Asia. The objective of this study was to identify physiological and morphological responses of O. spinosa L. species to cold, drought stress in laboratory conditions. Exposure of plants to a drought stress for 28 days slightly decreased the photochemical efficiency of PSII and the Fv/Fm values were 10-15% lower (0.75±0.01) compared with the control plants (0.85±0.01). For cold treatments, plants were exposed to 4°C for 60 days and for recovery transferred to normal growth conditions for 14 days. Fv/Fm photochemical efficiency of PSII can be used to monitor PSII photoinhibition. This parameter describes the efficiency of the electron transfer within PSII.The results of this study demonstrated that O. spinosa L. plants were better adapted to cold and drought conditions as they showed less visible symptoms and highest Fv/Fm levels at the long time chilling and drought stress.


2014 ◽  
Vol 12 (S1) ◽  
pp. S49-S53 ◽  
Author(s):  
Moon Young Kim ◽  
Yang Jae Kang ◽  
Taeyoung Lee ◽  
Suk-Ha Lee

Adzuki bean (Vigna angularis [Willd.] Ohwi & H. Ohashi) is one of the most important legume crops cultivated in East Asia and northern South Asia. Despite its agronomic importance, the lack of available sequence information has made it difficult to improve important agronomic traits. In the present study, we performed de novo assembly of transcript sequences produced by short-read sequencing to construct 59,860 full-length protein-coding sequences in adzuki bean. These genes were subjected to a BLASTP search to identify putative homologues of the 84 Arabidopsis genes involved in the circadian clock and photoperiodic flowering pathway. A large proportion of these Arabidopsis genes were found to be conserved in adzuki bean. However, there were no homologues of six genes including FLOWER LOCUS D (FD) and LEAFY (LFY). Furthermore, the phylogenetic relationships of 25 highly homologous matches to CONSTANS (CO) or CONSTANS-LIKE (COL) of Arabidopsis indicated the lack of a CO orthologue in adzuki bean. FLOWER LOCUS T (FT) and its homologues were found to have two homologous counterparts in adzuki bean. This study provides primary genetic resources that may be useful for producing adzuki bean with improved flowering and fruiting performance in response to environmental changes.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Xiaoya Lin ◽  
Chao Fang ◽  
Baohui Liu ◽  
Fanjiang Kong

AbstractFlowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments.


Sign in / Sign up

Export Citation Format

Share Document