Circadian clock and photoperiodic flowering genes in adzuki bean (Vigna angularis [Willd.] Ohwi & H. Ohashi)

2014 ◽  
Vol 12 (S1) ◽  
pp. S49-S53 ◽  
Author(s):  
Moon Young Kim ◽  
Yang Jae Kang ◽  
Taeyoung Lee ◽  
Suk-Ha Lee

Adzuki bean (Vigna angularis [Willd.] Ohwi & H. Ohashi) is one of the most important legume crops cultivated in East Asia and northern South Asia. Despite its agronomic importance, the lack of available sequence information has made it difficult to improve important agronomic traits. In the present study, we performed de novo assembly of transcript sequences produced by short-read sequencing to construct 59,860 full-length protein-coding sequences in adzuki bean. These genes were subjected to a BLASTP search to identify putative homologues of the 84 Arabidopsis genes involved in the circadian clock and photoperiodic flowering pathway. A large proportion of these Arabidopsis genes were found to be conserved in adzuki bean. However, there were no homologues of six genes including FLOWER LOCUS D (FD) and LEAFY (LFY). Furthermore, the phylogenetic relationships of 25 highly homologous matches to CONSTANS (CO) or CONSTANS-LIKE (COL) of Arabidopsis indicated the lack of a CO orthologue in adzuki bean. FLOWER LOCUS T (FT) and its homologues were found to have two homologous counterparts in adzuki bean. This study provides primary genetic resources that may be useful for producing adzuki bean with improved flowering and fruiting performance in response to environmental changes.

2015 ◽  
Vol 112 (43) ◽  
pp. 13213-13218 ◽  
Author(s):  
Kai Yang ◽  
Zhixi Tian ◽  
Chunhai Chen ◽  
Longhai Luo ◽  
Bo Zhao ◽  
...  

Adzuki bean (Vigna angularis), an important legume crop, is grown in more than 30 countries of the world. The seed of adzuki bean, as an important source of starch, digestible protein, mineral elements, and vitamins, is widely used foods for at least a billion people. Here, we generated a high-quality draft genome sequence of adzuki bean by whole-genome shotgun sequencing. The assembled contig sequences reached to 450 Mb (83% of the genome) with an N50 of 38 kb, and the total scaffold sequences were 466.7 Mb with an N50 of 1.29 Mb. Of them, 372.9 Mb of scaffold sequences were assigned to the 11 chromosomes of adzuki bean by using a single nucleotide polymorphism genetic map. A total of 34,183 protein-coding genes were predicted. Functional analysis revealed that significant differences in starch and fat content between adzuki bean and soybean were likely due to transcriptional abundance, rather than copy number variations, of the genes related to starch and oil synthesis. We detected strong selection signals in domestication by the population analysis of 50 accessions including 11 wild, 11 semiwild, 17 landraces, and 11 improved varieties. In addition, the semiwild accessions were illuminated to have a closer relationship to the cultigen accessions than the wild type, suggesting that the semiwild adzuki bean might be a preliminary landrace and play some roles in the adzuki bean domestication. The genome sequence of adzuki bean will facilitate the identification of agronomically important genes and accelerate the improvement of adzuki bean.


2019 ◽  
Vol 61 (3) ◽  
pp. 536-545 ◽  
Author(s):  
Yukio Kurihara ◽  
Yuko Makita ◽  
Haruka Shimohira ◽  
Tomoya Fujita ◽  
Shintaro Iwasaki ◽  
...  

Abstract Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.


2021 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Alexandre Bueno Santos ◽  
Patrícia Silva Costa ◽  
Anderson Oliveira do Carmo ◽  
Gabriel da Rocha Fernandes ◽  
Larissa Lopes Silva Scholte ◽  
...  

Members of the genusChromobacteriumhave been isolated from geographically diverse ecosystems and exhibit considerable metabolic flexibility, as well as biotechnological and pathogenic properties in some species. This study reports the draft assembly and detailed sequence analysis ofChromobacterium amazonensestrain 56AF. The de novo-assembled genome is 4,556,707 bp in size and contains 4294 protein-coding and 95 RNA genes, including 88 tRNA, six rRNA, and one tmRNA operon. A repertoire of genes implicated in virulence, for example, hemolysin, hemolytic enterotoxins, colicin V, lytic proteins, and Nudix hydrolases, is present. The genome also contains a collection of genes of biotechnological interest, including esterases, lipase, auxins, chitinases, phytoene synthase and phytoene desaturase, polyhydroxyalkanoates, violacein, plastocyanin/azurin, and detoxifying compounds. Importantly, unlike otherChromobacteriumspecies, the 56AF genome contains genes for pore-forming toxin alpha-hemolysin, a type IV secretion system, among others. The analysis of theC. amazonensestrain 56AF genome reveals the versatility, adaptability, and biotechnological potential of this bacterium. This study provides molecular information that may pave the way for further comparative genomics and functional studies involvingChromobacterium-related isolates and improves our understanding of the global genomic diversity ofChromobacteriumspecies.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 692
Author(s):  
Sweta Talyan ◽  
Samantha Filipów ◽  
Michael Ignarski ◽  
Magdalena Smieszek ◽  
He Chen ◽  
...  

Diseases of the renal filtration unit—the glomerulus—are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.


2021 ◽  
Author(s):  
Jonathan Filee ◽  
Hubert J. Becker ◽  
Lucille Mellottee ◽  
Zhihui LI ◽  
Jean-Christophe Lambry ◽  
...  

Little is known about the evolution and biosynthetic function of DNA precursor and the folate metabolism in the Asgard group of archaea. As Asgard occupy a key position in the archaeal and eukaryotic phylogenetic trees, we have exploited very recently emerged genome and metagenome sequence information to investigate these central metabolic pathways. Our genome-wide analyses revealed that the recently cultured Asgard archaeon Candidatus Prometheoarchaeum syntrophicum strain MK-D1 (Psyn) contains a complete folate-dependent network for the biosynthesis of DNA/RNA precursors, amino acids and syntrophic amino acid utilization. Altogether our experimental and computational data suggest that phylogenetic incongruences of functional folate-dependent enzymes from Asgard archaea reflect their persistent horizontal transmission from various bacterial groups, which has rewired the key metabolic reactions in an important and recently identified archaeal phylogenetic group. We also experimentally validated the functionality of the lateral gene transfer of Psyn thymidylate synthase ThyX. This enzyme uses bacterial-like folates efficiently and is inhibited by mycobacterial ThyX inhibitors. Our data raise the possibility that the thymidylate metabolism, required for de novo DNA synthesis, originated in bacteria and has been independently transferred to archaea and eukaryotes. In conclusion, our study has revealed that recent prevalent lateral gene transfer has markedly shaped the evolution of Asgard archaea by allowing them to adapt to specific ecological niches.


1989 ◽  
Vol 9 (12) ◽  
pp. 5484-5490
Author(s):  
T van Daalen Wetters ◽  
M Macrae ◽  
M Brabant ◽  
A Sittler ◽  
P Coffino

The activity of ornithine decarboxylase (ODC) is negatively regulated by intracellular polyamines, which thereby mediate a form of feedback inhibition of the initial enzyme in the pathway of their synthesis. This phenomenon has been believed to result, at least in part, from translational regulation. To investigate this further, we performed four series of experiments. First, we found that a chimeric protein encoded by an mRNA containing the ODC 5' leader sequence did not exhibit polyamine-dependent regulation. Second, we showed that transcripts containing the protein-coding sequence of ODC, but no other ODC-derived sequence information, exhibited regulation. Third, we found that the association of ODC mRNA with ribosomes was not altered when intracellular polyamine levels were modulated under conditions previously deemed to cause translational regulation. Last, we carried out experiments to measure the incorporation of [35S]methionine into ODC in polyamine-starved and polyamine-replete cells. Differential incorporation diminished progressively as pulse-label times were shortened; at the shortest labeling time used (4 min), the difference in favor of ODC in polyamine-starved cells was less than twofold. These findings suggest that it is necessary to reevaluate the question of whether polyamines cause alterations of translation of ODC mRNA.


Sign in / Sign up

Export Citation Format

Share Document