scholarly journals Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity

2013 ◽  
Vol 64 (14) ◽  
pp. 4479-4490 ◽  
Author(s):  
Graham J. Hymus ◽  
Suqin Cai ◽  
Elizabeth A. Kohl ◽  
Hans E. Holtan ◽  
Colleen M. Marion ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keisuke Sasaki ◽  
Yuuki Ida ◽  
Sakihito Kitajima ◽  
Tetsu Kawazu ◽  
Takashi Hibino ◽  
...  

Abstract Alteration in the leaf mesophyll anatomy by genetic modification is potentially a promising tool for improving the physiological functions of trees by improving leaf photosynthesis. Homeodomain leucine zipper (HD-Zip) transcription factors are candidates for anatomical alterations of leaves through modification of cell multiplication, differentiation, and expansion. Full-length cDNA encoding a Eucalyptus camaldulensis HD-Zip class II transcription factor (EcHB1) was over-expressed in vivo in the hybrid Eucalyptus GUT5 generated from Eucalyptus grandis and Eucalyptus urophylla. Overexpression of EcHB1 induced significant modification in the mesophyll anatomy of Eucalyptus with enhancements in the number of cells and chloroplasts on a leaf-area basis. The leaf-area-based photosynthesis of Eucalyptus was improved in the EcHB1-overexpression lines, which was due to both enhanced CO2 diffusion into chloroplasts and increased photosynthetic biochemical functions through increased number of chloroplasts per unit leaf area. Additionally, overexpression of EcHB1 suppressed defoliation and thus improved the growth of Eucalyptus trees under drought stress, which was a result of reduced water loss from trees due to the reduction in leaf area with no changes in stomatal morphology. These results gave us new insights into the role of the HD-Zip II gene.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


2017 ◽  
Vol 16 (7) ◽  
pp. 1537 ◽  
Author(s):  
Lian Xiaowen ◽  
Li Kesheng ◽  
Du Huifen ◽  
Li Xingwen ◽  
Cui Yan ◽  
...  

2006 ◽  
Vol 26 (3) ◽  
pp. 1109-1123 ◽  
Author(s):  
Daniela S. Bassères ◽  
Elena Levantini ◽  
Hongbin Ji ◽  
Stefano Monti ◽  
Shannon Elf ◽  
...  

ABSTRACT The leucine zipper family transcription factor CCAAT enhancer binding protein alpha (C/EBPα) inhibits proliferation and promotes differentiation in various cell types. In this study, we show, using a lung-specific conditional mouse model of C/EBPα deletion, that loss of C/EBPα in the respiratory epithelium leads to respiratory failure at birth due to an arrest in the type II alveolar cell differentiation program. This differentiation arrest results in the lack of type I alveolar cells and differentiated surfactant-secreting type II alveolar cells. In addition to showing a block in type II cell differentiation, the neonatal lungs display increased numbers of proliferating cells and decreased numbers of apoptotic cells, leading to epithelial expansion and loss of airspace. Consistent with the phenotype observed, genes associated with alveolar maturation, survival, and proliferation were differentially expressed. Taken together, these results identify C/EBPα as a master regulator of airway epithelial maturation and suggest that the loss of C/EBPα could also be an important event in the multistep process of lung tumorigenesis. Furthermore, this study indicates that exploring the C/EBPα pathway might have therapeutic benefits for patients with respiratory distress syndromes.


1992 ◽  
Vol 12 (12) ◽  
pp. 5620-5631 ◽  
Author(s):  
B Shan ◽  
X Zhu ◽  
P L Chen ◽  
T Durfee ◽  
Y Yang ◽  
...  

The retinoblastoma protein interacts with a number of cellular proteins to form complexes which are probably crucial for its normal physiological function. To identify these proteins, we isolated nine distinct clones by direct screening of cDNA expression libraries using purified RB protein as a probe. One of these clones, Ap12, is expressed predominantly at the G1-S boundary and in the S phase of the cell cycle. The nucleotide sequence of Ap12 has features characteristic of transcription factors. The C-terminal region binds to unphosphorylated RB in regions similar to those to which T antigen binds and contains a transactivation domain. A region containing a potential leucine zipper flanked by basic residues is able to bind an E2F recognition sequence specifically. Expression of Ap12 in mammalian cells significantly enhances E2F-dependent transcriptional activity. These results suggest that Ap12 encodes a protein with properties known to be characteristic of transcription factor E2F.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


Sign in / Sign up

Export Citation Format

Share Document