Artificial Intelligence in Medicine

Author(s):  
Gia Merlo

Disruptive forces are challenging the future of medicine. One of the key forces bringing change is the development of artificial intelligence (AI). AI is a technological system designed to perform tasks that are commonly associated with human intelligence and ability. Machine learning is a subset of AI, and deep learning is an aspect of machine learning. AI can be categorized as either applied or generalized. Machine learning is key to applied AI; it is dynamic and can become more accurate through processing different results. Other new technologies include blockchain, which allows for the storage of all of patients’ records to create a connected health ecosystem. Medical professionals ought to be willing to accept new technology, while also developing the skills that technology will not be able to replicate.

2020 ◽  
Vol 9 (2) ◽  
pp. 107-118
Author(s):  
Apoorva Ganapathy ◽  
Md. Redwanuzzaman ◽  
Md. Mahbubur Rahaman ◽  
Wahiduzzaman Khan

Artificial intelligence-driven cryptocurrencies are cryptocurrencies created by Artificial intelligence using the traditional human cryptocurrency development framework without human intervention. An AI explores the data from each different stream and arriving at the framework which can host these cryptocurrencies following the standards of legality. Cryptography is the encryption of specific data to conceal it and keep it a secret from unwanted third parties. Cryptocurrencies are encrypted currencies with unique keys as developed by developers. Artificial intelligence is an advanced machine programmed to simulate and emulate human intelligence by carrying tasks and reaching conclusions with little or no human intervention. This work considered the use of AI through machine learning and deep learning in the development of cryptocurrencies. The AI machine will set all the parameters and structure of the cryptocurrency. This will include how data is added, removed, and verified on the stream. Blockchain is an open ledger of a cryptocurrency's transactions. It stores files in the system, arranged in blocks, and connected on a list called chains. The article considers how AI-driven cryptocurrency will run using the blockchain network and its impact on it. Artificial intelligence and cryptocurrency are technological very essential technological development currently. The effect of the combination of both technologies would be enormous in the future as both technologies will develop each other remarkably.  


Author(s):  
Gagan Kukreja

Almost all financial services (especially digital payments) in China are affected by new innovations and technologies. New technologies such as blockchain, artificial intelligence, machine learning, deep learning, and data analytics have immensely influenced all most all aspects of financial services such as deposits, transactions, billings, remittances, credits (B2B and P2P), underwriting, insurance, and so on. Fintech companies are enabling larger financial inclusion, changing in lifestyle and expenditure behavior, better and fast financial services, and lots more. This chapter covers the development, opportunities, and challenges of financial sectors because of new technologies in China. This chapter throws the light on opportunities that emerged because of the large population of 1.4 billion people, high penetration, and access to the latest and affordable technology, affordable cost of smartphones, and government policies and regulations. Lastly, this chapter portrays the untapped potentials of Fintech in China.


2018 ◽  
Vol 4 (5) ◽  
pp. 443-463
Author(s):  
Jim Shook ◽  
Robyn Smith ◽  
Alex Antonio

Businesses and consumers increasingly use artificial intelligence (“AI”)— and specifically machine learning (“ML”) applications—in their daily work. ML is often used as a tool to help people perform their jobs more efficiently, but increasingly it is becoming a technology that may eventually replace humans in performing certain functions. An AI recently beat humans in a reading comprehension test, and there is an ongoing race to replace human drivers with self-driving cars and trucks. Tomorrow there is the potential for much more—as AI is even learning to build its own AI. As the use of AI technologies continues to expand, and especially as machines begin to act more autonomously with less human intervention, important questions arise about how we can best integrate this new technology into our society, particularly within our legal and compliance frameworks. The questions raised are different from those that we have already addressed with other technologies because AI is different. Most previous technologies functioned as a tool, operated by a person, and for legal purposes we could usually hold that person responsible for actions that resulted from using that tool. For example, an employee who used a computer to send a discriminatory or defamatory email could not have done so without the computer, but the employee would still be held responsible for creating the email. While AI can function as merely a tool, it can also be designed to act after making its own decisions, and in the future, will act even more autonomously. As AI becomes more autonomous, it will be more difficult to determine who—or what—is making decisions and taking actions, and determining the basis and responsibility for those actions. These are the challenges that must be overcome to ensure AI’s integration for legal and compliance purposes.


2019 ◽  
Author(s):  
Lu Liu ◽  
Ahmed Elazab ◽  
Baiying Lei ◽  
Tianfu Wang

BACKGROUND Echocardiography has a pivotal role in the diagnosis and management of cardiovascular diseases since it is real-time, cost-effective, and non-invasive. The development of artificial intelligence (AI) techniques have led to more intelligent and automatic computer-aided diagnosis (CAD) systems in echocardiography over the past few years. Automatic CAD mainly includes classification, detection of anatomical structures, tissue segmentation, and disease diagnosis, which are mainly completed by machine learning techniques and the recent developed deep learning techniques. OBJECTIVE This review aims to provide a guide for researchers and clinicians on relevant aspects of AI, machine learning, and deep learning. In addition, we review the recent applications of these methods in echocardiography and identify how echocardiography could incorporate AI in the future. METHODS This paper first summarizes the overview of machine learning and deep learning. Second, it reviews current use of AI in echocardiography by searching literature in the main databases for the past 10 years and finally discusses potential limitations and challenges in the future. RESULTS AI has showed promising improvements in analysis and interpretation of echocardiography to a new stage in the fields of standard views detection, automated analysis of chamber size and function, and assessment of cardiovascular diseases. CONCLUSIONS Compared with machine learning, deep learning methods have achieved state-of-the-art performance across different applications in echocardiography. Although there are challenges such as the required large dataset, AI can provide satisfactory results by devising various strategies. We believe AI has the potential to improve accuracy of diagnosis, reduce time consumption, and decrease the load of cardiologists.


2021 ◽  
Vol 8 ◽  
Author(s):  
Raffaele Nuzzi ◽  
Giacomo Boscia ◽  
Paola Marolo ◽  
Federico Ricardi

Artificial intelligence (AI) is a subset of computer science dealing with the development and training of algorithms that try to replicate human intelligence. We report a clinical overview of the basic principles of AI that are fundamental to appreciating its application to ophthalmology practice. Here, we review the most common eye diseases, focusing on some of the potential challenges and limitations emerging with the development and application of this new technology into ophthalmology.


2020 ◽  
pp. 75-92
Author(s):  
Chris Bleakley

Chapter 5 delves into the origins of artificial intelligence (AI). By the end of the 1940s, a few visionaries realised that computers were more than mere automatic calculators. They believed that computers running the right algorithms could perform tasks previously thought to require human intelligence. Christopher Strachey completed the first artificially intelligent computer program in 1952. The program played the board game Checkers. Arthur Samuel of IBM extended and improved on Strachey’s program by including machine learning - the ability of a program to learn from experience. A team from Carnegie Melon University developed the first computer program that could perform algebra. The program eventually reproduced 38 of the 52 proofs in a classic mathematics textbook. Flushed by these successes, serious scientists made wildly optimistic pronouncements about the future of AI. In the event, project after project failed to deliver and the first “AI winter” set in.


Author(s):  
Prarthana Dutta ◽  
Naresh Babu Muppalaneni ◽  
Ripon Patgiri

The world has been evolving with new technologies and advances day-by-day. With the advent of various learning technologies in every field, the research community is able to provide solution in every aspect of life with the applications of Artificial Intelligence, Machine Learning, Deep Learning, Computer Vision, etc. However, with such high achievements, it is found to lag behind the ability to provide explanation against its prediction. The current situation is such that these modern technologies are able to predict and decide upon various cases more accurately and speedily than a human, but failed to provide an answer when the question of why to trust its prediction is put forward. In order to attain a deeper understanding into this rising trend, we explore a very recent and talked-about novel contribution which provides rich insight on a prediction being made -- ``Explainability.'' The main premise of this survey is to provide an overview for researches explored in the domain and obtain an idea of the current scenario along with the advancements published to-date in this field. This survey is intended to provide a comprehensive background of the broad spectrum of Explainability.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document