Recent Development of Artificial Intelligence Applied in Echocardiography: A Review (Preprint)
BACKGROUND Echocardiography has a pivotal role in the diagnosis and management of cardiovascular diseases since it is real-time, cost-effective, and non-invasive. The development of artificial intelligence (AI) techniques have led to more intelligent and automatic computer-aided diagnosis (CAD) systems in echocardiography over the past few years. Automatic CAD mainly includes classification, detection of anatomical structures, tissue segmentation, and disease diagnosis, which are mainly completed by machine learning techniques and the recent developed deep learning techniques. OBJECTIVE This review aims to provide a guide for researchers and clinicians on relevant aspects of AI, machine learning, and deep learning. In addition, we review the recent applications of these methods in echocardiography and identify how echocardiography could incorporate AI in the future. METHODS This paper first summarizes the overview of machine learning and deep learning. Second, it reviews current use of AI in echocardiography by searching literature in the main databases for the past 10 years and finally discusses potential limitations and challenges in the future. RESULTS AI has showed promising improvements in analysis and interpretation of echocardiography to a new stage in the fields of standard views detection, automated analysis of chamber size and function, and assessment of cardiovascular diseases. CONCLUSIONS Compared with machine learning, deep learning methods have achieved state-of-the-art performance across different applications in echocardiography. Although there are challenges such as the required large dataset, AI can provide satisfactory results by devising various strategies. We believe AI has the potential to improve accuracy of diagnosis, reduce time consumption, and decrease the load of cardiologists.