Imaging techniques for sacroiliac joint injections

2021 ◽  
pp. 115-120
Author(s):  
Jacqueline Weisbein

Injections into the sacroiliac joint for both diagnostic and therapeutic purposes have become commonplace. There have been advances in the use of regenerative therapies other than prolotherapy, such as platelet-rich plasma and stem cells. Prior to the introduction of image-guided techniques, blind injections were performed. However, data have consistently shown that without image guidance, injections failed to be accurately placed within the joint. Therefore, the use of image guidance, whether by computed tomography, fluoroscopy, or ultrasound, is imperative to ensure accurate placement of the injectate. This chapter discusses these three types of imaging techniques for sacroiliac joint injections.

2017 ◽  
Vol 65 (4) ◽  
pp. 359-367 ◽  
Author(s):  
Giulia Tarquinio DEMARCO ◽  
Laura Borges KIRSCHNICK ◽  
Luis Bayardo WATSON ◽  
Marcus Cristian MUNIZ CONDE ◽  
Flávio Fernando DEMARCO ◽  
...  

ABSTRACT Regenerative therapies have been widely developed in dentistry and it is important to incorporate dentists’ knowledge of these new therapies into the dental clinic routine. This study reviewed the literature on regenerative therapies and clinical applications. Tissue engineering has contributed to changes in the paradigm of restorative health sciences. Its pillars underpin the techniques of tissue and organ regeneration. Despite the majority of studies in this field being in vitro, a range of preclinical studies and methodologies has been formed using these principles and they are already being used on humans. The use of platelet-rich plasma and platelet-rich fibrin in surgery as natural scaffolds for the reestablishment of bone and periodontal tissue are often reported in the literature and clinical trials using this approach have shown promising results. Stem cells from autologous dental pulp have been successfully applied in bone tissue regeneration using natural collagen scaffold in humans. In addition, revascularization of the root canal already appears in the literature as a promising alternative to apexification. The principle behind this therapy is the use of the blood clot as a scaffold and the migration of stem cells of the apical papilla to regenerate the dental pulp organ. Final considerations: Although still in the early stages, regenerative therapies can now be used in dental practice. Knowledge of the principles governing these therapies should be understood by the dentist for use in clinical practice.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1250
Author(s):  
Ming-Che Liu ◽  
Meng-Lin Chang ◽  
Ya-Chun Wang ◽  
Wei-Hung Chen ◽  
Chien-Chih Wu ◽  
...  

Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.


2020 ◽  
Vol 15 (6) ◽  
pp. 1775-1787
Author(s):  
Lisa Ann Fortier ◽  
Laurie Ruth Goodrich ◽  
Iris Ribitsch ◽  
Lauren Virginia Schnabel ◽  
David Owen Shepard ◽  
...  

Regenerative medicine is commonly used in human and equine athletes. Potential therapies include culture expanded stem cells, stromal vascular fraction of adipose tissue, platelet-rich plasma, bone marrow concentrate, or autologous conditioned serum. The purpose of this manuscript is to disseminate findings from a workshop on the development of translational regenerative medicine in the equine field. Five themes emerged: stem cell characterization and tenogenic differentiation; interactions between mesenchymal stem cells, other cells and the environment; scaffolds and cell packaging; blood- and bone marrow-based regenerative medicines; clinical use of regenerative therapies. Evidence gained through the use of regenerative medicine applications in the horse should continue to translate to the human patient, bringing novel regenerative therapies to both humans and horses.


2013 ◽  
Vol 4;16 (4;7) ◽  
pp. 369-377
Author(s):  
Dr. Vincent Timpone

The utilization of spinal interventional pain techniques has grown rapidly over the last decade. However, practitioners use widely different techniques in these procedures, particularly in the use of image guidance. The importance of image guidance was highlighted by the fact that in recent systematic reviews on therapeutic effectiveness of epidural steroid injections and facet joint interventions, only studies that used image guidance were included. The choice of image guidance remains a matter of physician preference with conventional fluoroscopic or Computed Tomography (CT) guidance most common. There are many advantages to CT guidance for certain spinal interventional pain procedures, mainly due to increased needle tip positioning accuracy. CT guidance provides greater anatomical detail that facilitates accurate needle trajectory planning, monitoring and final placement. Unlike conventional fluoroscopy that may be hindered by tissue overlap and lack of surrounding anatomical detail CT guidance offers direct visualization of the entire needle trajectory and the surrounding soft tissue and bone structures. Large osteophytes and adjacent vascular structures can be identified and safely avoided. The goals of this narrative review are to provide a basic overview of CT techniques available for spinal interventional pain procedures, to discuss the potential advantages and disadvantages of CT guidance, to provide a simple step-by-step approach to use of CT guidance, to share technical pearls, and to discuss methods to avoid potential pitfalls. This review will provide interventional pain physicians with knowledge of relevant CT image acquisition techniques and appropriate radiation dose reduction strategies. This will contribute to increased technical success rates while reducing radiation dose to the patient and staff. Key words: Computed tomography, fluoroscopy, analgesia, epidural injection, spinal injection, back pain, safety


2013 ◽  
Vol 19 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Eric W. Nottmeier ◽  
Stephen M. Pirris ◽  
Steven Edwards ◽  
Sherri Kimes ◽  
Cammi Bowman ◽  
...  

Object Surgeon and operating room (OR) staff radiation exposure during spinal surgery is a concern, especially with the increasing use of multiplanar fluoroscopy in minimally invasive spinal surgery procedures. Cone beam computed tomography (cbCT)–based, 3D image guidance does not involve the use of active fluoroscopy during instrumentation placement and therefore decreases radiation exposure for the surgeon and OR staff during spinal fusion procedures. However, the radiation scatter of a cbCT device can be similar to that of a standard 64-slice CT scanner and thus could expose the surgeon and OR staff to radiation during image acquisition. The purpose of the present study was to measure radiation exposure at several unshielded locations in the OR when using cbCT in conjunction with 3D image-guided spinal surgery in 25 spinal surgery cases. Methods Five unshielded badge dosimeters were placed at set locations in the OR during 25 spinal surgery cases in which cbCT-based, 3D image guidance was used. The cbCT device (O-ARM) was used in conjunction with the Stealth S7 image-guided platform. The radiology department analyzed the badge dosimeters after completion of the last case. Results Fifty high-definition O-ARM spins were performed in 25 patients for spinal registration and to check instrumentation placement. Image-guided placement of 124 screws from C-2 to the ileum was accomplished without complication. Badge dosimetry analysis revealed minimal radiation exposure for the badges 6 feet from the gantry in the area of the anesthesiology equipment, as well as for the badges located 10–13 feet from the gantry on each side of the room (mean 0.7–3.6 mrem/spin). The greatest radiation exposure occurred on the badge attached to the OR table within the gantry (mean 176.9 mrem/spin), as well as on the control panel adjacent to the gantry (mean 128.0 mrem/spin). Conclusions Radiation scatter from the O-ARM was minimal at various distances outside of and not adjacent to the gantry. Although the average radiation exposure at these locations was low, an earlier study, undertaken in a similar fashion, revealed no radiation exposure when the surgeon stood behind a lead shield. This simple precaution can eliminate the small amount of radiation exposure to OR staff in cases in which the O-ARM is used.


2010 ◽  
Vol 10 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Winky Wing Ki Fung ◽  
Vincent Wing Cheung Wu

AbstractThe sharp dose gradients in intensity-modulated radiation therapy increase the treatment sensitivity to various inter- and intra-fractional uncertainties, in which a slight anatomical change may greatly alter the actual dose delivered. Image-guided radiotherapy refers to the use of advanced imaging techniques to precisely track and correct these patient-specific variations in routine treatment. It can also monitor organ changes during a radiotherapy course. Currently, image-guided radiotherapy using computed tomography has gained much popularity in radiotherapy verification as it provides volumetric images with soft-tissue contrast for on-line tracking of tumour. This article reviews four types of computed tomography-based image guidance systems and their working principles. The system characteristics and clinical applications of the helical, megavoltage, computed tomography, and kilovoltage, cone-beam, computed tomography systems are discussed, given that they are currently the most commonly used systems for radiotherapy verification. This article also focuses on the recent techniques of soft-tissue contrast enhancement, digital tomosynthesis, four-dimensional fluoroscopic image guidance, and kilovoltage/megavoltage, in-line cone-beam imaging. These evolving systems are expected to take over the conventional two-dimensional verification system in the near future and provide the basis for implementing adaptive radiotherapy.


PM&R ◽  
2019 ◽  
Vol 11 (S1) ◽  
Author(s):  
Patricia Zheng ◽  
Byron J. Schneider ◽  
Aaron Yang ◽  
Zachary L. McCormick

2021 ◽  
Vol 13 ◽  
pp. 175628722110020
Author(s):  
Robert Drury ◽  
Caleb Natale ◽  
Wayne J. G. Hellstrom

Erectile dysfunction (ED) is both a common and complex disease process. Existing ED treatments do not always achieve adequate results. There is clinical interest in employing regenerative therapies, including low-intensity extracorporeal shockwave therapy (Li-ESWT), platelet rich plasma (PRP), and stem cell therapy (SCT), in the treatment of ED as adjunct or alternative treatments. Here, we present evidence for emerging shockwave- and cell-based regenerative therapies for the treatment of ED following a thorough review of the existing PubMed literature pertaining to Li-ESWT, PRP, and SCT in relation to the treatment of ED. Li-ESWT causes microtrauma in tissue that hypothetically upregulates angiogenesis and recruits stem cells. Several large-scale systematic reviews and meta-analyses have reported that Li-ESWT improved ED in humans. Additionally, evidence has commenced to show that Li-ESWT may be effective against two recognized and complex etiologies of ED: diabetic and neurogenic. PRP delivers an autologous sample rich in growth factors to damaged tissue. Animal model studies have demonstrated improved erectile function recovery as well as preservation of cavernous nerve axons. Studies with PRP in humans are limited. SCT utilizes the regenerative potential of stem cells for healing of damaged tissue. In the treatment of ED, SCT has been used in the setting of diabetic and post-prostatectomy ED. Results of human studies are varied, although SCT treatments did result in increased erectile rigidity with some patients recovering the ability to achieve penetration. While these regenerative therapies show potential to augment the current treatment regimen for ED, there is a paucity of evidence to support the safety and efficacy of these treatments. Further research is necessary to define the role of these alternative therapies in the treatment of ED.


2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Unger ◽  
Johann Berger ◽  
Andreas Melzer

Image guidance is a common methodology of minimally invasive procedures. Depending on the type of intervention, various imaging modalities are available. Common imaging modalities are computed tomography, magnetic resonance tomography, and ultrasound. Robotic systems have been developed to enable and improve the procedures using these imaging techniques. Spatial and technological constraints limit the development of versatile robotic systems. This paper offers a brief overview of the developments of robotic systems for image-guided interventions since 2015 and includes samples of our current research in this field.


Sign in / Sign up

Export Citation Format

Share Document