Renal acid–base homeostasis

Author(s):  
Carsten A. Wagner ◽  
Olivier Devuyst

The kidney is central to acid–base homeostasis. Major processes are reabsorption of filtered bicarbonate, de novo synthesis of bicarbonate from ammoniagenesis, and net excretion of protons. The latter requires buffers such as ammonium, phosphate, citrate and other bases binding protons (so-called titratable acids). The proximal tubule is the major site of bicarbonate reabsorption and only site of ammoniagenesis. The thick ascending limb and the distal convoluted tubule handle ammonia/ammonium and complete bicarbonate reabsorption. The collecting duct system excretes protons and ammonium, but may switch to net bicarbonate secretion. The kidney displays a great plasticity to adapt acid or bicarbonate excretion. Angiotensin II, aldosterone and endothelin are involved in regulating these processes, and they induce morphological changes along the nephron. Inborn and acquired disorders of renal acid–base handling are caused by mutations in acid–base transport proteins or by dysregulation of adaptive mechanisms.

2000 ◽  
Vol 279 (3) ◽  
pp. F459-F467 ◽  
Author(s):  
Gheun-Ho Kim ◽  
Stephen W. Martin ◽  
Patricia Fernández-Llama ◽  
Shyama Masilamani ◽  
Randall K. Packer ◽  
...  

Increased systemic acid intake is associated with an increase in apical Na/H exchange in the renal proximal tubule mediated by the type 3 Na/H exchanger (NHE3). Because NHE3 mediates both proton secretion and Na absorption, increased NHE3 activity could inappropriately perturb Na balance unless there are compensatory changes in Na handling. In this study, we use semiquantitative immunoblotting of rat kidneys to investigate whether acid loading is associated with compensatory decreases in the abundance of renal tubule Na transporters other than NHE3. Long-term (i.e., 7-day) acid loading with NH4Cl produced large decreases in the abundances of the thiazide-sensitive Na-Cl cotransporter (TSC/NCC) of the distal convoluted tubule and both the β- and γ-subunits of the amiloride-sensitive epithelial Na channel (ENaC) of the collecting duct. In addition, the renal cortical abundance of the proximal type 2 Na-dependent phosphate transporter (NaPi-2) was markedly decreased. In contrast, abundances of the bumetanide-sensitive Na-K-2Cl cotransporter of the thick ascending limb and the α-subunit of ENaC were unchanged. A similar profile of changes was seen with short-term (16-h) acid loading. Long-term (7-day) base loading with NaHCO3resulted in the opposite pattern of response with marked increases in the abundances of the β- and γ-subunits of ENaC and NaPi-2. These adaptations may play critical roles in the maintenance in Na balance when changes in acid-base balance occur.


1991 ◽  
Vol 261 (2) ◽  
pp. F221-F226 ◽  
Author(s):  
D. E. Kohan

Endothelins regulate nephron sodium and water transport, prostaglandin E2 (PGE2) synthesis, and phospholipid metabolism. Recent studies suggest that renal tubule cells synthesize endothelins. To determine which nephron sites have such potential, endothelin production by cells derived from different nephron segments was examined. Immunoreactive endothelin 1 (ET-1) and endothelin 3 (ET-3) were measured in supernatants of cultured rabbit proximal tubule (PT), medullary thick ascending limb (MTAL), cortical collecting tubule (CCT), and inner medullary collecting duct (IMCD) cells. All cell types released immunoreactive ET-1 and ET-3. However, the amounts of endothelin produced differed as follows: IMCD greater than MTAL greater than CCT much greater than PT for ET-1 and IMCD greater than MTAL = PT = CCT for ET-3; in all cases ET-1 much greater than ET-3. To confirm de novo ET-3 synthesis, IMCD cells were labeled with [35S]cysteine, and the supernatant was immunoprecipitated with anti-ET-3 antibody. Sample and standard ET-3 eluted at identical positions on high-performance liquid chromatographs, confirming de novo synthesis of ET-3 by cultured IMCD cells. These data raise the possibility of an important functional role for nephron-derived endothelin and, in particular, endothelin produced by tubule cells in the medulla.


2009 ◽  
Vol 297 (2) ◽  
pp. F499-F509 ◽  
Author(s):  
Nilufar Mohebbi ◽  
Marija Mihailova ◽  
Carsten A. Wagner

Calcineurin inhibitors like FK506 (tacrolimus) are routinely used for immunosuppression following transplantation. Its use is limited by many side effects, including renal tubular acidosis (RTA), mainly of the distal type. In this study, rats were treated with FK506 and at baseline (after 9 days) systemic acid-base status was similar to that in control animals. However, FK506-treated rats given NH4Cl in the drinking water for 2 days developed a more severe metabolic acidosis than control animals. Urine pH was more alkaline, but net acid excretion was normal. After 7 days of acid load, all differences related to acid-base homeostasis were equalized in both groups. Protein abundance of type IIa Na-Pi cotransporter, type 3 Na+/H+ exchanger, and electrogenic Na+-bicarbonate cotransporter, and both a4 and B2 subunits of the vacuolar H+-ATPase were reduced under baseline conditions, while induction of metabolic acidosis enhanced protein abundance of these transporters in FK506-treated animals. In parallel, protein expression of AE1 was reduced at baseline and increased together with pendrin during NH4Cl loading in FK506 rats. Protein abundance of the Na+-bicarbonate cotransporter NBCn1 was reduced under baseline conditions but remained downregulated during metabolic acidosis. Morphological analysis revealed an increase in the relative number of non-type A intercalated cells in the connecting tubule and cortical collecting duct at the expense of principal cells. Additionally, subcellular distribution of the a4 subunit of the vacuolar H+-ATPase was affected by FK506 with less luminal localization in the connecting tubule and outer medullary collecting duct. These data suggest that FK506 impacts on several major acid-base transport proteins in the kidney, and its use is associated with transient metabolic acidosis and altered expression of key renal acid-base transport proteins.


2011 ◽  
Vol 300 (1) ◽  
pp. F11-F23 ◽  
Author(s):  
I. David Weiner ◽  
Jill W. Verlander

Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ “trapping” is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl− cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.


1989 ◽  
Vol 77 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Shozo Torikai

1. In order to examine the possibility of heterogeneity in the dependence of renal tubular cells upon oxidative phosphorylation and exogenous substrates, the effects of antimycin A and substrate deprivation on adenosine 5′-triphosphate (ATP) content were examined in isolated rat nephron segments in vitro at 37°C. 2. Antimycin A (5 μmol/l) caused varying decrements in cell ATP level within 5 min in the following order: proximal tubules > cortical thick ascending limb of Henle's loop (cTAL) > cortical collecting duct (cCD) in the cortex, and thin descending limb of Henle's loop (TDL) > medullary thick ascending limb of Henle's loop (mTAL) > outer medullary collecting duct (omCD) in the inner stripe of the outer medulla. In the thick ascending limb and the collecting duct, the segments located in the cortex were more sensitive than those in the medulla. 3. Substrate deprivation for 30 min markedly decreased the cell ATP content in cortical and medullary proximal tubules and also in medullary TDL, whereas it caused only a slight decrease in cTAL and mTAL with no change in cCD and omCD. 4. Media made hypertonic by the addition of 200 mmol/l NaCl under aerobic conditions, increased the requirement for exogenous substrates in TDL and mTAL, but not in omCD. This stimulation was seen to a lesser extent in media made hypertonic by the addition of mannitol instead of NaCl. 5. Taking into consideration a knowledge of rat kidney architecture and intrarenal gradient of oxygen partial pressure, it is likely that the observed dependency upon both oxygen and exogenous substrates in the renal tubular cells reflects adaptation of such cells to their anatomical location, and to the availability of those substances in situ. Furthermore, extracellular sodium concentration and osmolarity stimulate metabolic requirements to a different extent among the nephron segments.


2011 ◽  
Vol 301 (5) ◽  
pp. F979-F996 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O2−) and to examine the impact of NO-O2− interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O2) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O2−. Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O2, NO, and O2−. Notwithstanding vasoactive effects, our model predicts that in the absence of O2−-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O2− modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O2 as a substrate for NO. When O2− levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O2 exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O2−, and O2 significantly impact the O2 balance and NaCl reabsorption in the outer medulla.


1987 ◽  
Vol 7 (5) ◽  
pp. 1961-1966
Author(s):  
G N Rao ◽  
E S Buford ◽  
J N Davidson

CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.


2001 ◽  
Vol 12 (7) ◽  
pp. 1327-1334 ◽  
Author(s):  
KATSUKI KOBAYASHI ◽  
SHINICHI UCHIDA ◽  
SHUKI MIZUTANI ◽  
SEI SASAKI ◽  
FUMIAKI MARUMO

Abstract. CLC-K2, a kidney-specific member of the CLC chloride channel family, is thought to play an important role in the transepithelial Cl- transport in the kidney. This consensus was first reached shortly after it was demonstrated that the mutations of the human CLCNKB gene resulted in Bartter's syndrome type III. To clarify the pathogenesis, the exact intrarenal and cellular localization of CLC-K2 by immunohistochemistry of the Clcnk1-/- mouse kidney were investigated by use of an anti-CLC-K antibody that recognized both CLC-K1 and CLC-K2. CLC-K2 is expressed in the thick ascending limb of Henle's loop and distal tubules, where it is localized to the basolateral membranes. The localization of CLC-K2 to these nephron segments strongly implies that CLC-K2 confers the basolateral chloride conductance in the thick ascending limb of Henle's loop and distal tubules, where Cl- is taken up by the bumetanide-sensitive Na-K-2Cl cotransporter or the thiazide-sensitive Na-Cl cotransporter at the apical membranes. CLC-K2 expression was also shown to extend into the connecting tubule in the basolateral membrane. CLC-K2 was found in basolateral membranes of the type A intercalated cells residing along the collecting duct. This localization strongly suggests that CLC-K2 confers the basolateral conductance in the type A intercalated cells where Cl- is taken up by the anion exchanger in exchange for HCO3- at the basolateral membranes. These aspects of CLC-K2 localization suggest that CLC-K2 is important in Cl- transport in the distal nephron segments.


2016 ◽  
Vol 311 (2) ◽  
pp. F411-F423 ◽  
Author(s):  
Kerim Mutig ◽  
Tordis Borowski ◽  
Christin Boldt ◽  
Aljona Borschewski ◽  
Alexander Paliege ◽  
...  

The antidiuretic hormone vasopressin (AVP) regulates renal salt and water reabsorption along the distal nephron and collecting duct system. These effects are mediated by vasopressin 2 receptors (V2R) and release of intracellular Gs-mediated cAMP to activate epithelial transport proteins. Inactivating mutations in the V2R gene lead to the X-linked form of nephrogenic diabetes insipidus (NDI), which has chiefly been related with impaired aquaporin 2-mediated water reabsorption in the collecting ducts. Previous work also suggested the AVP-V2R-mediated activation of Na+-K+-2Cl−-cotransporters (NKCC2) along the thick ascending limb (TAL) in the context of urine concentration, but its individual contribution to NDI or, more generally, to overall renal function was unclear. We hypothesized that V2R-mediated effects in TAL essentially determine its reabsorptive function. To test this, we reevaluated V2R expression. Basolateral membranes of medullary and cortical TAL were clearly stained, whereas cells of the macula densa were unreactive. A dominant-negative, NDI-causing truncated V2R mutant (Ni3-Glu242stop) was then introduced into the rat genome under control of the Tamm-Horsfall protein promoter to cause a tissue-specific AVP-signaling defect exclusively in TAL. Resulting Ni3-V2R transgenic rats revealed decreased basolateral but increased intracellular V2R signal in TAL epithelia, suggesting impaired trafficking of the receptor. Rats displayed significant baseline polyuria, failure to concentrate the urine in response to water deprivation, and hypercalciuria. NKCC2 abundance, phosphorylation, and surface expression were markedly decreased. In summary, these data indicate that suppression of AVP-V2R signaling in TAL causes major impairment in renal fluid and electrolyte handling. Our results may have clinical implications.


1998 ◽  
Vol 275 (1) ◽  
pp. F143-F153 ◽  
Author(s):  
L. B. Zimmerhackl ◽  
F. Momm ◽  
G. Wiegele ◽  
M. Brandis

Cadmium toxicity to renal cells was investigated in Madin-Darby canine kidney (MDCK) and LLC-PK1cells as models of the distal tubule/collecting duct and proximal tubule, respectively. Cells were grown on two-compartment filters and exposed to 0.1–50 μM Cd2+. In MDCK cells, Cd2+was more toxic from the basolateral than from the apical side and dependent on the extracellular Ca2+concentration. Toxicity was evident within 24 h, as shown by a decrease in transepithelial resistance (TER), reduced proliferation (bromodeoxyuridine incorporation), reduction in ATP concentration, and morphological changes. On confocal microscopy, E-cadherin and α-catenin staining patterns indicated interference with the cadherin-catenin complex. LLC-PK1cells showed a similar toxicity pattern, which was evident at lower Cd2+concentrations. An increase of E-cadherin and α-catenin molecules in the Triton X-100-insoluble fraction was detectable at high Cd2+concentrations in LLC-PK1cells but not in MDCK cells. Lactate dehydrogenase release indicated membrane leakage in LLC-PK1cells. Rhodamine-phalloidin staining, a probe for F-actin filaments, demonstrated alterations of the actin cytoskeleton in both cell lines. In conclusion, cadmium caused ATP depletion and interfered with the cadherin-catenin complex and probably the tight junctions changing renal cell morphology and function.


Sign in / Sign up

Export Citation Format

Share Document