The Brain and Its Epigenome

Author(s):  
Amanda C. Mitchell ◽  
Yan Jiang ◽  
Cyril J. Peter ◽  
Ki A. Goosens ◽  
Schahram Akbarian

Exploration of the epigenome—collectively defined by DNA methylation, post-translational histone modifications, histone variants and other regulators of genome organization and function—has emerged as one of the most prolific areas of the basic and clinical neurosciences alike. This is due to a number of recent developments, including a wealth of genetic information on psychiatric disorders indicating that many risk-associated DNA variants and mutations do not affect protein coding sequences. Furthermore, the hopeful prospect of chromatin modifying drugs to lead to novel therapeutic options—while largely based on preclinical studies in small laboratory animals such as rats and mice— has infiltrated many areas of medicine, including neurology and psychiatry. Here, we summarize current concepts and emerging insights on epigenetic regulation in the nervous system, with focus on the human brain and the neurobiology and pharmacology of cognitive and emotional disease.

2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


1998 ◽  
Vol 4 (6) ◽  
pp. 689-690
Author(s):  
Jarl Risberg

Imaging of the structure and function of the human brain has grown to an area with increasing impact on neuropsychological research as well as on the routine clinical evaluation of brain damaged patients. The scientific and popular literature is now flooded by increasingly more spectacular pictures of the brain. The images no longer only illustrate what is well known from earlier research but they do also sometimes provide information of importance for the further development of neuropsychological theories. The two volumes edited by Erin D. Bigler, Neuroimaging I and II, offer a possibility for neuropsychologists and other interested readers to get acquainted with the more recent developments in measurement technology and applications in basic science (Volume I) as well as in the clinic (Volume II). The authors of the 24 chapters are generally outstanding researchers, with impressive expertise within their fields of specialization.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150451 ◽  
Author(s):  
Daphna Joel ◽  
Anne Fausto-Sterling

In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140171 ◽  
Author(s):  
Richard Frackowiak ◽  
Henry Markram

Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context.


2009 ◽  
Vol 87 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Mohammed Altaf ◽  
Andréanne Auger ◽  
Marcela Covic ◽  
Jacques Côté

The organization of the eukaryotic genome into chromatin makes it inaccessible to the factors required for gene transcription and DNA replication, recombination, and repair. In addition to histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, which play key roles in regulating many nuclear processes by altering the chromatin structure, cells have developed a mechanism of modulating chromatin structure by incorporating histone variants. These variants are incorporated into specific regions of the genome throughout the cell cycle. H2A.Z, which is an evolutionarily conserved H2A variant, performs several seemingly unrelated and even contrary functions. Another H2A variant, H2A.X, plays a very important role in the cellular response to DNA damage. This review summarizes the recent developments in our understanding of the role of H2A.Z and H2A.X in the regulation of chromatin structure and function, focusing on their functional links with chromatin modifying and remodeling complexes.


Author(s):  
Mathias Clasen

Horror entertainment is paradoxically popular. It is one of the most consistently popular genres across media, yet it is designed to make audiences feel bad. An evolutionary perspective, one that builds on recent developments in cognitive and evolutionary psychology, can help explain the genre’s popularity as well as its form and function. This chapter argues that horror fiction is crucially dependent on evolved properties of the human central nervous system and that a nuanced and scientifically valid understanding of horror requires that we take human evolutionary history seriously. Horror targets ancient defense mechanisms in the brain. At the same time, horror changes in response to sociocultural context. Hence, the chapter argues for a biocultural critical approach to horror, one that is sensitive to cultural context as well as evolved psychological underpinnings. The chapter explains the rationale of the book and outlines its structure.


Author(s):  
Andrew Chess ◽  
Schahram Akbarian

Conventional psychopharmacology elicits an insufficient therapeutic response in more than one half of patients diagnosed with schizophrenia, bipolar disorder, depression, anxiety, or related disorders. This underscores the need to further explore the neurobiology and molecular pathology of mental disorders in order to develop novel treatment strategies of higher efficacy. One promising avenue of research is epigenetics.Deeper understanding of genome organization and function in normal and diseased human brain will require comprehensive charting of neuronal and glial epigenomes. This includes DNA cytosine and adenine methylation, hundred(s) of residue-specific post-translational histone modifications and histone variants, transcription factor occupancies, and chromosomal conformations and loopings. Epigenome mappings provide an important avenue to assign function to many risk-associated DNA variants and mutations that do not affect protein-coding sequences. Powerful novel single cell technologies offer the opportunity to understand genome function in context of the vastly complex cellular heterogeneity and neuroanatomical diversity of the human brain.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Author(s):  
Elizabeth Hampson

Organizational and activational effects of sex steroids were first discovered in laboratory animals, but these concepts extend to hormonal actions in the human central nervous system. This chapter begins with a brief overview of how sex steroids act in the brain and how the organizational-activational hypothesis originated in the field of endocrinology. It then reviews common methods used to study these effects in humans. Interestingly, certain cognitive functions appear to be subject to modification by sex steroids, and these endocrine influences may help explain the sex differences often seen in these functions. The chapter considers spatial cognition as a representative example because the spatial family of functions has received the most study by researchers interested in the biological roots of sex differences in cognition. The chapter reviews evidence that supports an influence of both androgens and estrogens on spatial functions, and concludes with a glimpse of where the field is headed.


Sign in / Sign up

Export Citation Format

Share Document