Novel Paranannizziopsis species in a Wagler's viper (Tropidolaemus wagleri), tentacled snakes (Erpeton tentaculatum), and a rhinoceros snake (Rhynchophis boulengeri) in a zoological collection

2018 ◽  
Vol 57 (7) ◽  
pp. 825-832 ◽  
Author(s):  
Kimberly L Rainwater ◽  
Nathan P Wiederhold ◽  
Deanna A Sutton ◽  
Michael M Garner ◽  
Cheryl Maguire ◽  
...  

AbstractWe report several cases of fungal infections in snakes associated with a new species within the genus Paranannizziopsis. Three juvenile Wagler's vipers (Tropidolaemus wagleri) presented with skin abnormalities or ulcerative dermatitis, and two snakes died. Histologic examination of skin from the living viper revealed hyperplastic, hyperkeratotic, and crusting epidermitis with intralesional fungal elements. The terrestrial Wagler's vipers were housed in a room with fully aquatic tentacled snakes (Erpeton tentaculatum), among which there had been a history of intermittent skin lesions. Approximately 2 months after the biopsy of the viper, a skin sample was collected from one tentacled snake (TS1) with skin abnormalities and revealed a fungal infection with a similar histologic appearance. Fungal isolates were obtained via culture from the Wagler's viper and TS1 and revealed a novel species, Paranannizziopsis tardicrescens, based on phenotypic characterization and molecular analysis. P. tardicrescens was cultured and identified by DNA sequence analysis 8 months later from a dead tentacled snake in an exhibit in an adjacent hallway and 13 months later from a living rhinoceros snake (Rhynchophis boulengeri) with two focal skin lesions. Antifungal susceptibility testing on three of four cultured isolates demonstrated potent in vitro activity for terbinafine and voriconazole.

2015 ◽  
Vol 57 (suppl 19) ◽  
pp. 57-64 ◽  
Author(s):  
Ana ALASTRUEY-IZQUIERDO ◽  
Marcia S.C. MELHEM ◽  
Lucas X. BONFIETTI ◽  
Juan L. RODRIGUEZ-TUDELA

SUMMARYDuring recent decades, antifungal susceptibility testing has become standardized and nowadays has the same role of the antibacterial susceptibility testing in microbiology laboratories. American and European standards have been developed, as well as equivalent commercial systems which are more appropriate for clinical laboratories. The detection of resistant strains by means of these systems has allowed the study and understanding of the molecular basis and the mechanisms of resistance of fungal species to antifungal agents. In addition, many studies on the correlation of in vitro results with the outcome of patients have been performed, reaching the conclusion that infections caused by resistant strains have worse outcome than those caused by susceptible fungal isolates. These studies have allowed the development of interpretative breakpoints for Candida spp. and Aspergillus spp., the most frequent agents of fungal infections in the world. In summary, antifungal susceptibility tests have become essential tools to guide the treatment of fungal diseases, to know the local and global disease epidemiology, and to identify resistance to antifungals.


Infection ◽  
2020 ◽  
Vol 48 (3) ◽  
pp. 429-434 ◽  
Author(s):  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Aneta Nowakiewicz ◽  
Mariusz Dyląg

Abstract Background Fungal infections of the skin, hair, and nails are the largest and most widespread group of all mycoses. Nannizzia nana is a relatively rare etiological factor of dermatomycosis in humans, as it usually affects animals, e.g. pigs and boars. In addition to the zoophilic nature, there are also reports of the geophilic reservoir of this dermatophyte species. Objective In this study, we present symptomatic infections with N. nana aetiology in humans reported recently in Poland. Interestingly, these cases had a non-specific clinical picture and occurred as skin lesions on the neck and foot as well as onychomycosis of the toenails. From the medical history, the patients had no contact with pigs. Methods Diagnostics of these infections was performed with a combination of classical phenotypic and molecular genomic methods. The genomic diversity of the isolates was determined using the MP-PCR method. In vitro antifungal susceptibility tests against itraconazole, ketoconazole, terbinafine and naftifine hydrochloride were also performed. Results Nannizzia nana has been identified as an etiological factor of dermatomycosis. Moreover, heterogeneity of the genomes was revealed for the obtained strains. In vitro activities of antifungal agents showed that isolates were susceptible to all tested drugs. The patients were treated with oral terbinafine and topical ketoconazole cream, which led to a complete recovery. Conclusions In conclusion, the cases studied by us may indicate that the infrequency of N. nana infections may not necessarily be related to the low infectivity of this fungal agent, but they are rather associated with misdiagnosis. Furthermore, N. nana reservoirs should also be sought in soil.


2019 ◽  
Vol 5 (4) ◽  
pp. 108 ◽  
Author(s):  
Eric Dannaoui ◽  
Ana Espinel-Ingroff

Antifungal susceptibility testing is an important tool for managing patients with invasive fungal infections, as well as for epidemiological surveillance of emerging resistance. For routine testing in clinical microbiology laboratories, ready-to-use commercial methods are more practical than homemade reference techniques. Among commercially available methods, the concentration gradient Etest strip technique is widely used. It combines an agar-based diffusion method with a dilution method that determinates a minimal inhibitory concentration (MIC) in µg/mL. Many studies have evaluated the agreement between the gradient strip method and the reference methods for both yeasts and filamentous fungi. This agreement has been variable depending on the antifungal, the species, and the incubation time. It has also been shown that the gradient strip method could be a valuable alternative for detection of emerging resistance (non-wild-type isolates) as Etest epidemiological cutoff values have been recently defined for several drug-species combinations. Furthermore, the Etest could be useful for direct antifungal susceptibility testing on blood samples and basic research studies (e.g., the evaluation of the in vitro activity of antifungal combinations). This review summarizes the available data on the performance and potential use of the gradient strip method.


2020 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Frederic Lamoth ◽  
Russell E. Lewis ◽  
Dimitrios P. Kontoyiannis

Invasive fungal infections (IFIs) are associated with high mortality rates and timely appropriate antifungal therapy is essential for good outcomes. Emerging antifungal resistance among Candida and Aspergillus spp., the major causes of IFI, is concerning and has led to the increasing incorporation of in vitro antifungal susceptibility testing (AST) to guide clinical decisions. However, the interpretation of AST results and their contribution to management of IFIs remains a matter of debate. Specifically, the utility of AST is limited by the delay in obtaining results and the lack of pharmacodynamic correlation between minimal inhibitory concentration (MIC) values and clinical outcome, particularly for molds. Clinical breakpoints for Candida spp. have been substantially revised over time and appear to be reliable for the detection of azole and echinocandin resistance and for outcome prediction, especially for non-neutropenic patients with candidemia. However, data are lacking for neutropenic patients with invasive candidiasis and some non-albicans Candida spp. (notably emerging Candida auris). For Aspergillus spp., AST is not routinely performed, but may be indicated according to the epidemiological context in the setting of emerging azole resistance among A. fumigatus. For non-Aspergillus molds (e.g., Mucorales, Fusarium or Scedosporium spp.), AST is not routinely recommended as interpretive criteria are lacking and many confounders, mainly host factors, seem to play a predominant role in responses to antifungal therapy. This review provides an overview of the pre-clinical and clinical pharmacodynamic data, which constitute the rationale for the use and interpretation of AST testing of yeasts and molds in clinical practice.


Dermatology ◽  
2021 ◽  
pp. 1-20
Author(s):  
Julia J. Shen ◽  
Maiken C. Arendrup ◽  
Shyam Verma ◽  
Ditte Marie L. Saunte

<b><i>Background:</i></b> Dermatophytosis is commonly encountered in the dermatological clinics. The main aetiological agents in dermatophytosis of skin and nails in humans are <i>Trichophyton</i> (<i>T</i>.) <i>rubrum</i>, <i>T. mentagrophytes</i> and <i>T. interdigitale</i> (former <i>T. mentagrophytes-</i>complex). Terbinafine therapy is usually effective in eradicating infections due to these species by inhibiting their squalene epoxidase (SQLE) enzyme, but increasing numbers of clinically resistant cases and mutations in the SQLE gene have been documented recently. Resistance to antimycotics is phenotypically determined by antifungal susceptibility testing (AFST). However, AFST is not routinely performed for dermatophytes and no breakpoints classifying isolates as susceptible or resistant are available, making it difficult to interpret the clinical impact of a minimal inhibitory concentration (MIC). <b><i>Summary:</i></b> PubMed was systematically searched for terbinafine susceptibility testing of dermatophytes on October 20, 2020, by two individual researchers. The inclusion criteria were <i>in vitro</i> terbinafine susceptibility testing of <i>Trichophyton (T.) rubrum</i>, <i>T. mentagrophytes</i> and <i>T. interdigitale</i> with the broth microdilution technique. The exclusion criteria were non-English written papers. Outcomes were reported as MIC range, geometric mean, modal MIC and MIC<sub>50</sub> and MIC<sub>90</sub> in which 50 or 90% of isolates were inhibited, respectively. The reported MICs ranged from &#x3c;0.001 to &#x3e;64 mg/L. The huge variation in MIC is partly explained by the heterogeneity of the <i>Trichophyton</i> isolates, where some originated from routine specimens (wild types) whereas others came from non-responding patients with a known SQLE gene mutation. Another reason for the great variation in MIC is the use of different AFST methods where MIC values are not directly comparable. High MICs were reported particularly in isolates with SQLE gene mutation. The following SQLE alterations were reported: F397L, L393F, L393S, H440Y, F393I, F393V, F415I, F415S, F415V, S443P, A448T, L335F/A448T, S395P/A448T, L393S/A448T, Q408L/A448T, F397L/A448T, I121M/V237I and H440Y/F484Y in terbinafine-resistant isolates.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


2021 ◽  
Vol 17 ◽  
Author(s):  
Zarifeh Adampour ◽  
Malihe Hasanzadeh ◽  
Hossein Zarrinfar ◽  
Maryam Nakhaei ◽  
Monika Novak Babič

Introduction: Endometrial cancer is one of the most common malignancies of the female genital tract, which can be serious or life-threatening. Microbial infections can be one of the underlying causes of this type of cancer. Case Presentation: The present study describes the isolation of Pichia fermentans (Candida firmentaria var. firmentaria) from the vaginal secretions of a 61-year-old woman affected by endometrial cancer. She reported abdominal pain and vaginal discharge for 3 months, and had a history of diabetes, hypertension, Deep Vein Thrombosis (DVT), and Acute Myeloid Leukemia (AML). The isolated yeast was identified based on nuclear ribosomal internal transcribed spacer (ITS1-ITS2 rDNA) sequence analysis. The in vitro antifungal susceptibility testing showed a higher effect for ketoconazole against P. fermentans than fluconazole, itraconazole and voriconazole. Conclusion: Correct differentiation between P. fermentans and other yeast should be considered. The in vitro antifungal susceptibility testing is recommended for rare yeast, and will help the physicians in providing the best treatment.


2015 ◽  
Vol 59 (6) ◽  
pp. 3675-3682 ◽  
Author(s):  
B. Risslegger ◽  
C. Lass-Flörl ◽  
G. Blum ◽  
M. Lackner

ABSTRACTFor antifungal susceptibility testing of nonsporulating or poorly sporulating dermatophytes, a fragmented-mycelium inoculum preparation method was established and compared to broth microdilution testing according to CLSI and EUCAST guidelines. Moreover, thein vitroactivity of new antifungal agents against dermatophytes was evaluated. Agreement between the mycelial inoculum method and the CLSI broth microdilution method was high (93% to 100%). Echinocandins (minimal effective concentration [MEC], ≤0.5 mg/liter) and posaconazole (MIC, ≤3.00 mg/liter) showed good activity against all tested dermatophytes.


Author(s):  
Najmossadat MUSAVI BAFRUI ◽  
Seyed Jamal HASHEMI HAZAVEH ◽  
Mansour BAYAT

Background: Dermatophytosis is one of the most common fungal infections in humans. Antifungals such as fluconazole are effectively used for treating dermatophytosis; however, drug resistance was observed in many cases. Therefore, a newer treatment strategy is essential. Methods: This study (Conducted in the Laboratory of the School of Public Health, Tehran University of Medical Sciences, Tehran, Iran in 2018) evaluated the antifungal susceptibility of nano fluconazole compared to conventional fluconazole on dermatophyte isolates using CLSI M38-A2guidelines. Dermatophyte species isolated from clinical cases of dermatophytosis were identified using PCR sequencing techniques. Zeta potential and size of the nano particles containing fluconazole were measured; scanning electron microscope (SEM) was used to determine nano particle structure. Results: The size of liposomal fluconazole obtained was 88.9  12.14 nm with –20.12  3.8 mV for zeta potential. The encapsulation rate for fluconazole was 75.1  4.2%. MIC50 for the three tested species was 32, 16, and 8 μg/ml for Trichophyton interdigitale, T. rubrum, and Epidermophyton floccosum isolates, respectively. The corresponding values for nano fluconazole were 8 μg/ml for the three tested species. Conclusion: MIC value for nano-fluconazole was lower than conventional fluconazole in all dermatophytes species tested; therefore, nano-fluconazole could inhibit the growth of dermatophytes better than fluconazole at a lower concentration of the drug.


Sign in / Sign up

Export Citation Format

Share Document