scholarly journals Including massive neutrinos in thermal Sunyaev Zeldovich power spectrum and cluster counts analyses

2020 ◽  
Vol 497 (2) ◽  
pp. 1332-1347 ◽  
Author(s):  
Boris Bolliet ◽  
Thejs Brinckmann ◽  
Jens Chluba ◽  
Julien Lesgourgues

ABSTRACT We consistently include the effect of massive neutrinos in the thermal Sunyaev Zeldovich (SZ) power spectrum and cluster counts analyses, highlighting subtle dependencies on the total neutrino mass and data combination. In particular, we find that using the transfer functions for cold dark matter (CDM) + baryons in the computation of the halo mass function, instead of the transfer functions including neutrino perturbations, as prescribed in recent work, yields an ≈0.25 per cent downward shift of the σ8 constraint from tSZ power spectrum data, with a fiducial neutrino mass Σmν = 0.06 eV. In ΛCDM, with an X-ray mass bias corresponding to the expected hydrostatic mass bias, i.e. (1 − b) ≃ 0.8, our constraints from Planck SZ data are consistent with the latest results from SPT, DES-Y1, and KiDS+VIKING-450. In νΛCDM, our joint analyses of Planck SZ with Planck 2015 primary CMB yield a small improvement on the total neutrino mass bound compared to the Planck 2015 primary CMB constraint, as well as (1 − b) = 0.64 ± 0.04 (68 per cent CL). For forecasts, we find that competitive neutrino mass measurements using cosmic variance limited SZ power spectrum require masking the heaviest clusters and probing the small-scale SZ power spectrum up to ℓmax ≈ 104. Although this is challenging, we find that SZ power spectrum can realistically be used to tightly constrain intracluster medium properties: we forecast a 2 per cent determination of the X-ray mass bias by combining CMB-S4 and our mock SZ power spectrum with ℓmax = 103.

2020 ◽  
Vol 228 ◽  
pp. 00005
Author(s):  
Boris Bolliet

In this proceeding I summarise the current status of cosmological constraints obtained from current SZ data, focusing on the Planck thermal SZ power spectrum and cluster counts. I discuss the consistency between Planck SZ data and other SZ cluster or galaxy surveys as well as the apparent discrepancy between SZ and CMB for the amplitude of matter clustering σ8. Finally I discuss forecasted constraints on massive neutrinos and the X-ray mass bias in the context of future SZ power spectrum measurements.


2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.


1996 ◽  
Vol 466 ◽  
pp. 13 ◽  
Author(s):  
Anatoly Klypin ◽  
Joel Primack ◽  
Jon Holtzman

2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


1985 ◽  
Vol 106 ◽  
pp. 321-322
Author(s):  
J. Crovisier ◽  
J. M. Dickey

The small-scale structure of galactic neutral hydrogen may be statistically described by the spatial power spectrum of the 21-cm line. This latter may be readily observed by interferometer arrays since it is the squared modulus of the visibility function. We have observed the , region with the Westerbork Synthesis Radio Telescope (Crovisier and Dickey, 1983). Brightness fluctuations of the 21-cm line were detected in this region on scales as small as 1.7 arcmin (corresponding to less than 5 pc). The Westerbork observations, combined with single-dish observations made at Nançay and Arecibo, allow determination of the spatial power spectrum over a dynamic range of about 106 in intensity. The spectrum follows roughly a power law with indices ~ −3 to −2. An interpretation in terms of the turbulence spectrum is proposed by Dickey (1985).


2020 ◽  
Vol 493 (1) ◽  
pp. L11-L15 ◽  
Author(s):  
M R Lovell

ABSTRACT The claimed detection of large amounts of substructure in lensing flux anomalies, and in Milky Way stellar stream gap statistics, has led to a step change in constraints on simple warm dark matter models. In this study, we compute predictions for the halo mass function both for these simple models and for comprehensive particle physics models of sterile neutrinos and dark acoustic oscillations. We show that the mass function fit of Lovell et al. underestimates the number of haloes less massive than the half-mode mass, $M_\mathrm {hm}$, by a factor of 2, relative to the extended Press–Schechter (EPS) method. The alternative approach of applying EPS to the Viel et al. matter power spectrum fit instead suggests good agreement at $M_\mathrm {hm}$ relative to the comprehensive model matter power spectrum results, although the number of haloes with mass $\rm{\lt} M_\mathrm {hm}$ is still suppressed due to the absence of small-scale power in the fitting function. Overall, we find that the number of dark matter haloes with masses $\rm{\lt} 10^{8}{\, \rm M_\odot }$ predicted by competitive particle physics models is underestimated by a factor of ∼2 when applying popular fitting functions, although careful studies that follow the stripping and destruction of subhaloes will be required in order to draw robust conclusions.


2018 ◽  
Vol 620 ◽  
pp. A78 ◽  
Author(s):  
Ziad Sakr ◽  
Stéphane Ilić ◽  
Alain Blanchard ◽  
Jamal Bittar ◽  
Wehbeh Farah

In recent years, the amplitude of matter fluctuations inferred from low-redshift probes has been found to be generally lower than the value derived from cosmic microwave background (CMB) observations in the ΛCDM model. This tension has been exemplified by Sunyaev-Zel’dovich and X-ray cluster counts which, when using theirPlanckstandard cluster mass calibration, yield a value ofσ8, appreciably lower than estimations based on the latestPlanckCMB measurements. In this work we examine whether non-minimal neutrino masses can alleviate this tension substantially. We used the cluster X-ray temperature distribution function derived from a flux-limited sample of local X-ray clusters, combined withPlanckCMB measurements. These datasets were compared to ΛCDM predictions based on recent mass function, adapted to account for the effects of massive neutrinos. Treating the clusters mass calibration as a free parameter, we examined whether the data favours neutrino masses appreciably higher than the minimal 0.06 eV value. Using Markov chain Monte Carlo methods, we found no significant correlation between the mass calibration of clusters and the sum of neutrino masses, meaning that massive neutrinos do not noticeably alleviate the above-mentionedPlanckCMB–clusters tension. The addition of other datasets (baryon acoustic oscillations and Ly-α) reinforces those conclusions. As an alternative possible solution to the tension, we introduced a simple, phenomenological modification of gravity by letting the growth indexγvary as an additional free parameter. We find that the cluster mass calibration is robustly correlated with theγparameter, insensitively to the presence of massive neutrinos or/and additional data used. We conclude that the standardPlanckmass calibration of clusters, if consolidated, would represent evidence for new physics beyond ΛCDM with massive neutrinos.


1998 ◽  
Vol 4 (6) ◽  
pp. 567-575 ◽  
Author(s):  
David B. Williams

X-ray microanalysis of materials using energy-dispersive spectrometry (EDS) has made the greatest impact in studies of compositional changes at atomic-level interfaces. The small physical dimensions of the silicon detector make EDS the X-ray analyzer of choice for analytical transmission electron microscopy (AEM). X-ray analysis of thin foils in the AEM has contributed to our understanding of elemental segregation to interphase interfaces and grain boundaries, as well as other planar defects. Measurement of atomic diffusion on a small scale close to interphase interfaces has permitted determination of substitutional atomic diffusivities several orders of magnitude smaller than previously possible and has also led to the determination of low-temperature equilibrium phase diagrams through the measurement of local interface compositions. Elemental segregation to grain boundaries is responsible for such deleterious behavior as temper embrittlement, stress-corrosion cracking, and other forms of intergranular failure. On the other hand, segregation can bring about improvement in behavior: sintering aids in ceramics and de-embrittlement of intermetallics. EDS in the AEM has been responsible for quantitative analysis of all aspects of the segregation process and, more recently, in combination with electron energy-loss spectrometry (EELS) has given insight into why boundary segregation results in such significant macroscopic changes in properties.


2019 ◽  
Vol 488 (4) ◽  
pp. 5085-5092 ◽  
Author(s):  
Sean Brennan ◽  
Andrew J Benson ◽  
Francis-Yan Cyr-Racine ◽  
Charles R Keeton ◽  
Leonidas A Moustakas ◽  
...  

Abstract In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhaloes through lens modelling, but recent work has suggested that the full population of subhaloes could be probed using a power spectrum analysis. In this paper, we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc−1) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhaloes can be directly detected via gravitational imaging.


2019 ◽  
Vol 491 (1) ◽  
pp. 1295-1310 ◽  
Author(s):  
Giulia Despali ◽  
Mark Lovell ◽  
Simona Vegetti ◽  
Robert A Crain ◽  
Benjamin D Oppenheimer

ABSTRACT We use high-resolution hydrodynamical simulations run with the EAGLE model of galaxy formation to study the differences between the properties of – and subsequently the lensing signal from – subhaloes of massive elliptical galaxies at redshift 0.2, in Cold and Sterile Neutrino (SN) Dark Matter models. We focus on the two 7 keV SN models that bracket the range of matter power spectra compatible with resonantly produced SN as the source of the observed 3.5 keV line. We derive an accurate parametrization for the subhalo mass function in these two SN models relative to cold dark matter (CDM), as well as the subhalo spatial distribution, density profile, and projected number density and the dark matter fraction in subhaloes. We create mock lensing maps from the simulated haloes to study the differences in the lensing signal in the framework of subhalo detection. We find that subhalo convergence is well described by a lognormal distribution and that signal of subhaloes in the power spectrum is lower in SN models with respect to CDM, at a level of 10–80 per cent, depending on the scale. However, the scatter between different projections is large and might make the use of power spectrum studies on the typical scales of current lensing images very difficult. Moreover, in the framework of individual detections through gravitational imaging a sample of ≃30 lenses with an average sensitivity of $M_{\rm {sub}} = 5 \times 10^{7}\, {\rm M}_{\odot}$ would be required to discriminate between CDM and the considered sterile neutrino models.


Sign in / Sign up

Export Citation Format

Share Document