scholarly journals Inevitable consequences of ion–neutral damping of intermediate MHD waves in Sun-like stars

2020 ◽  
Vol 498 (2) ◽  
pp. 2018-2029
Author(s):  
Philip G Judge

ABSTRACT In the context of the solar atmosphere, we re-examine the role of neutral and ionized species in dissipating the ordered energy of intermediate-mode MHD waves into heat. We solve conservation equations for the hydrodynamics and for hydrogen and helium ionization stages, along closed tubes of magnetic field. First, we examine the evolution of coronal plasma under conditions where coronal heating has abruptly ceased. We find that cool (<105K) structures are formed lasting for several hours. MHD waves of modest amplitude can heat the plasma through ion–neutral collisions with sufficient energy rates to support the plasma against gravity. Then we examine a calculation starting from a cooler atmosphere. The calculation shows that warm (>104) K long (> several Mm) tubes of plasma arise by the same mechanism. We speculate on the relevance of these solutions to observe properties of the Sun and similar stars whose atmospheres are permeated with emerging magnetic fields and stirred by convection. Perhaps this elementary process might help to explain the presence of ‘cool loops’ in the solar transition region and the production of broad components of transition region lines. The production of ionized hydrogen from such a simple and perhaps inevitable mechanism may be an important step towards finding the more complex mechanisms needed to generate coronae with temperatures in excess of 106K, independent of a star’s metallicity.

2018 ◽  
Vol 614 ◽  
pp. A110 ◽  
Author(s):  
P. Zacharias ◽  
V. H. Hansteen ◽  
J. Leenaarts ◽  
M. Carlsson ◽  
B. V. Gudiksen

Context. The measured average velocities in solar and stellar spectral lines formed at transition region temperatures have been difficult to interpret. The dominant redshifts observed in the lower transition region naturally leads to the question of how the upper layers of the solar (and stellar) atmosphere can be maintained. Likewise, no ready explanation has been made for the average blueshifts often found in upper transition region lines. However, realistic three-dimensional radiation magnetohydrodynamics (3D rMHD) models of the solar atmosphere are able to reproduce the observed dominant line shifts and may thus hold the key to resolve these issues. Aims. These new 3D rMHD simulations aim to shed light on how mass flows between the chromosphere and corona and on how the coronal mass is maintained. These simulations give new insights into the coupling of various atmospheric layers and the origin of Doppler shifts in the solar transition region and corona. Methods. The passive tracer particles, so-called corks, allow the tracking of parcels of plasma over time and thus the study of changes in plasma temperature and velocity not only locally, but also in a co-moving frame. By following the trajectories of the corks, we can investigate mass and energy flows and understand the composition of the observed velocities. Results. Our findings show that most of the transition region mass is cooling. The preponderance of transition region redshifts in the model can be explained by the higher percentage of downflowing mass in the lower and middle transition region. The average upflows in the upper transition region can be explained by a combination of both stronger upflows than downflows and a higher percentage of upflowing mass. The most common combination at lower and middle transition region temperatures are corks that are cooling and traveling downward. For these corks, a strong correlation between the pressure gradient along the magnetic field line and the velocity along the magnetic field line has been observed, indicating a formation mechanism that is related to downward propagating pressure disturbances. Corks at upper transition region temperatures are subject to a rather slow and highly variable but continuous heating process. Conclusions. Corks are shown to be an essential tool in 3D rMHD models in order to study mass and energy flows. We have shown that most transition region plasma is cooling after having been heated slowly to upper transition region temperatures several minutes before. Downward propagating pressure disturbances are identified as one of the main mechanisms responsible for the observed redshifts at transition region temperatures.


Author(s):  
V. Krivodubskij

Since the mid-70s of the last century, a new direction in theoretical studies of the evolution of the global magnetism of the Sun in the framework of macroscopic MHD has been launched at the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. The paper presents the results of a study of the processes of generation and restructuring of a large-scale (global) magnetic field based on the αΩ-dynamo model, taking into account new turbulent effects discovered in the theory of macroscopic MHD and data of helioseismological experiments on the internal rotation of the Sun. It was established that a sharp radial gradient of turbulent velocity in the lower half of the solar convective zone (SCZ) leads to a change in the sign of the azimuthal component of the helicity parameter α, resulting in the formation of a relatively thin layer of negative α-effect near the bottom of the SCZ. It was found that the layer of negative α-effect, together with the sign of the radial gradient of the angular velocity, detected in helioseismological experiments, makes it possible to explain the direction of migration of dynamo-waves on the solar surface. The magnetic saturation of the α-effect (alpha-quenching) in the deep layers of the SCZ was calculated. An explanation of the protracted duration of the 23rd solar cycle of about 13 years is proposed. For this, we used the observed data on a significant increase of the annual module of the magnetic fields of sunspots in the 23rd cycle. The calculated north-south asymmetry of the structure of the global magnetic field provides an opportunity to explain the phenomenon of the seeming magnetic “monopole”, which is observed during reversal of polar magnetism. It was found that the values of turbulent electrical conductivity and turbulent magnetic permeability of the solar plasma are significantly less than the corresponding gas-kinetic parameters. Therefore, the turbulent dissipation of solar magnetic fields is enhanced by 4–9 orders of magnitude compared with classical ohmic dissipation. Macroscopic turbulent diamagnetism of solar plasma was investigated. It has been found that in the lower part of the SCZ, turbulent diamagnetism acts against magnetic buoyancy, thus fulfilling the role of “negative magnetic buoyancy”. As a result of the balance of the effects of magnetic buoyancy and turbulent diamagnetism, a layer of blocked magnetic field of magnitude ≈ 3000 G is formed in the depths of the SCZ. The turbulent advection of a magnetic field in an inhomogeneous plasma density of the SCZ was studied. It was found that in the lower half of the SCZ of the equatorial domain, turbulent advection is directed upwards. As a result of the combined action of magnetic buoyancy and turbulent advection, deep strong toroidal fields are carried to the surface of the Sun in the latitudinal “royal zone” of sunspots. The role of horizontal turbulent diamagnetism in ensuring the long-term stability of sunspots was noted. To explain the observed phenomenon of double maxima of the solar spot cycle, a scenario was developed containing the generation of a magnetic field in the tachocline at the bottom of the SCZ and subsequent removal of this magnetic field from the depth layers to the surface in the latitudinal “royal zone”. The role of the radial omega-effect in the radiant zone in explaining the observed asymmetry in the amplitude of two neighbouring 11-years sunspot cycles was noted.


2014 ◽  
Vol 10 (S305) ◽  
pp. 121-126
Author(s):  
L. Strachan ◽  
Y.-K. Ko ◽  
J. D. Moses ◽  
J. M. Laming ◽  
F. Auchere ◽  
...  

AbstractMagnetic fields in the solar atmosphere provide the energy for most varieties of solar activity, including high-energy electromagnetic radiation, solar energetic particles, flares, and coronal mass ejections, as well as powering the solar wind. Despite the fundamental role of magnetic fields in solar and heliospheric physics, there exist only very limited measurements of the field above the base of the corona. What is needed are direct measurements of not only the strength and orientation of the magnetic field but also the signatures of wave motions in order to better understand coronal structure, solar activity, and the role of MHD waves in heating and accelerating the solar wind. Fortunately, the remote sensing instrumentation used to make magnetic field measurements is also well suited to measure the Doppler signature of waves in the solar structures. We present here a mission concept for the Waves And Magnetism In the Solar Atmosphere (WAMIS) experiment which is proposed for a NASA long-duration balloon flight.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1720
Author(s):  
Antonios Balassis ◽  
Godfrey Gumbs ◽  
Oleksiy Roslyak

We have investigated the α–T3 model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the α–T3 model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.


Sign in / Sign up

Export Citation Format

Share Document