scholarly journals Overdensity of SMGs in fields containing z ∼ 0.3 galaxies: magnification bias and the implications for studies of galaxy evolution

2020 ◽  
Vol 498 (4) ◽  
pp. 4635-4649
Author(s):  
L Dunne ◽  
L Bonavera ◽  
J Gonzalez-Nuevo ◽  
S J Maddox ◽  
C Vlahakis

ABSTRACT We report a remarkable overdensity of high-redshift submillimetre galaxies (SMG), 4–7 times the background, around a statistically complete sample of twelve 250 μm selected galaxies at z = 0.35, which were targeted by ALMA in a study of gas tracers. This overdensity is consistent with the effect of lensing by the haloes hosting the target z = 0.35 galaxies. The angular cross-correlation in this sample is consistent with statistical measures of this effect made using larger sub-mm samples. The magnitude of the overdensity as a function of radial separation is consistent with intermediate scale lensing by haloes of the order of $7\times 10^{13}\mbox{ $\rm M_{\odot }$ }$, which should host one or possibly two bright galaxies and several smaller satellites. This is supported by observational evidence of interaction with satellites in four out of the six fields with SMG, and membership of a spectroscopically defined group for a fifth. We also investigate the impact of these SMG on the reported Herschel fluxes of the z = 0.35 galaxies, as they produce significant contamination in the 350 and 500 μm Herschel bands. The higher than random incidence of these boosting events implies a significantly larger bias in the sub-mm colours of Herschel sources associated with z < 0.7 galaxies than has previously been assumed, with fboost = 1.13, 1.26, 1.44 at 250, 350, and 500 μm . This could have implications for studies of spectral energy distributions, source counts, and luminosity functions based on Herschel samples at z = 0.2–0.7.

2011 ◽  
Vol 7 (S284) ◽  
pp. 442-445
Author(s):  
Alberto Domínguez

AbstractThe extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for γ-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 μm has never been determined directly, neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving overall spectrum of the EBL is derived here utilizing a novel method based on observations only. It is emphasized that the local EBL seems already well constrained from the UV up to the mid-IR. Different independent methodologies such as direct measurement, galaxy counts, γ-ray attenuation and realistic EBL modelings point towards the same EBL intensity level. Therefore, a relevant contribution from Pop III stars to the local EBL seems unlikely.


2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2000 ◽  
Vol 17 (1) ◽  
pp. 56-71 ◽  
Author(s):  
Paul J. Francis ◽  
Matthew T. Whiting ◽  
Rachel L. Webster

AbstractWe present quasi-simultaneous multi-colour optical/near-IR photometry for 157 radio selected quasars, forming an unbiassed sub-sample of the Parkes Flat-Spectrum Sample. Data are also presented for 12 optically selected QSOs, drawn from the Large Bright QSO Survey. The spectral energy distributions of the radio- and optically-selected sources are quite different. The optically selected QSOs are all very similar: they have blue spectral energy distributions curving downwards at shorter wavelengths. Roughly 90% of the radio-selected quasars have roughly power-law spectral energy distributions, with slopes ranging from Fv∝v0 to Fv∝v−2. The remaining 10% have spectral energy distributions showing sharp peaks: these are radio galaxies and highly reddened quasars. Four radio sources were not detected down to magnitude limits of H ∼ 19·6. These are probably high redshift (z > 3) galaxies or quasars. We show that the colours of our red quasars lie close to the stellar locus in the optical: they will be hard to identify in surveys such as the Sloan Digital Sky Survey. If near-IR photometry is added, however, the red power-law sources can be clearly separated from the stellar locus: IR surveys such as 2MASS should be capable of finding these sources on the basis of their excess flux in the K-band.


1996 ◽  
Vol 171 ◽  
pp. 402-402
Author(s):  
M.W. Kümmel ◽  
S.J. Wagner

From overlapping scans in the IRAS all-sky survey and additional pointed observations the deepest far infrared survey before ISO exists in the region around the North Ecliptic Pole (NEP) (Hacking P. and Houck J.R., ApJS 63 p. 311). This survey contains detections up to 10 and fluxes up to 100 times fainter than the IRAS survey. In the central square degree around the NEP we combine the far IR-survey with deep radio data at 151 MHz and 1.5 GHz (Visser, A.E. et al., A&AS 110 p. 419, Kollgaard, R.I. et al., ApJS 93 p. 145) and own observation at 2.2μm (K′) and 435nm (B). The error circle around the IRAS source was chosen to include the true source with 85% probability (1.4 sigma). For 29 of the 32 IRAS sources we found at least one possible counterpart. Ten of the objects have multiple (up to four) counterparts in K′. Four of the IRAS sources have counterparts in the 1.5 GHz survey. The higher accuracy of the radio position (∼ 1″) allowed an unambiguous identification of the K′ counterpart. None of the IRAS sources could be found in the 151 MHz survey. The broad band spectra of the three galaxies with measured radio flux exhibit maximum emission between the radio band and 100μm which corresponds to emission by cool dust (< 50 K). Contrary to the infrared luminosity functions at 12μm and 60μm which show power laws, the K′ luminosity function is bimodal. The brightest K′ objects are all point sources. Due to the small number statistics the power law indices of the luminosity functions can not be distinguished. We find a linear relationship between the K′ flux and the flux at 60μm and 12μm over at least one decade. The large deviations by individual sources make an identification of the correct counterpart through this relation impossible. The spectral energy distributions of unambiguously identified sources span only one decade in energy (vSv), i.e. they have flat energy distributions. This suggests an identification of K′ objects with flat energy distribution in case of multiple counterparts.


2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


2020 ◽  
Vol 492 (3) ◽  
pp. 3459-3464 ◽  
Author(s):  
Maurizio Salaris ◽  
Chris Usher ◽  
Silvia Martocchia ◽  
Emanuele Dalessandro ◽  
Nate Bastian ◽  
...  

ABSTRACT The existence of star-to-star light-element abundance variations (multiple populations, MPs) in massive Galactic and extragalactic star clusters older than about 2 Gyr is by now well established. Photometry of red giant branch (RGB) stars has been and still is instrumental in enabling the detection and characterization of cluster MPs, through the appropriate choices of filters, colours, and colour combinations that are mainly sensitive to N and – to a lesser degree – C stellar surface abundances. An important issue not yet properly addressed is that the translation of the observed widths of the cluster RGBs to abundance spreads must account for the effect of the first dredge-up on the surface chemical patterns, hence on the spectral energy distributions of stars belonging to the various MPs. We have filled this gap by studying theoretically the impact of the dredge-up on the predicted widths of RGBs in clusters hosting MPs. We find that for a given initial range of N abundances, the first dredge-up reduces the predicted RGB widths in N-sensitive filters compared to the case when its effect on the stellar spectral energy distributions is not accounted for. This reduction is a strong function of age and has also a dependence on metallicity. The net effect is an underestimate of the initial N-abundance ranges from RGB photometry if the first dredge-up is not accounted for in the modelling, and also the potential determination of spurious trends of N-abundance spreads with age.


2009 ◽  
Vol 5 (H15) ◽  
pp. 329-329
Author(s):  
I. Olivares-Salaverri ◽  
Marcelo B. Ribeiro

This work aims to determine the feasibility of an assumed cosmological model by means of a detailed analysis of the brightness profiles of distant galaxies. Starting from the theory of Ellis & Perry (1979) connecting the angular diameter distance obtained from a relativistic cosmological model and the detailed photometry of galaxies, we assume the presently most accepted cosmology with Λ ¬ = 0 and seek to predict the brightness profile of a galaxy in a given redshift z. To do so, we have to make assumptions concerning the galactic brightness structure and evolution, assuming a scenario where the specific emitted surface brightness Be,νe can be characterized as, Be,νe (r,z) = B0(z)J(νe,z)f[r(z)/a(z)]. Here r is the intrinsic galactic radius, νe the emitted frequency, B0(z) the central surface brightness, J(νe,z) the spectral energy distribution (SED), f[r(z)/a(z)] characterizes the shape of the surface profile distribution and a(z) is the scaling radius. The dependence on z is due to the galactic evolution. As spacetime curvature affects the received surface brightness, the reciprocity theorem (Ellis 1971) allows us to predict the theoretical received surface brightness. So, we are able to compare the theoretical surface brightness with its equivalent observational data already available for high redshift galaxies in order to test the consistency of the assumed cosmological model. The function f[r(z)/a(z)] is represented in the literature by various different shapes, like the Hubble, Hubble-Oemler and Abell-Mihalas single parameter profiles, characterizing the galactic surface brightness quite well when the disk or bulge dependence is dominant. Sérsic and core-Sérsic profiles use two or more parameters and reproduce the galactic profile almost exactly (Trujillo et al. 2004). If we consider all wavelengths, the theory tells us that the total intensity is equal to the surface brightness, so the chosen bandwidth should include most of the SED. In order to analyze only the effect of the cosmological model in the surface brightness and minimize evolutionary effects, we assume that there exists a homogeneous class of objects, whose properties are similar in all redshifts, allowing us to carry out comparisons at different values of z. Studying the parameters that affect the galactic evolution, as well as in others geometrical tests, we will be able to infer some possible galaxy evolution which could reproduce a theoretical surface brightness profile, in order to compare with the observational data and reach conclusions about the observational feasibility of the underlying cosmological model.


2019 ◽  
Vol 15 (S341) ◽  
pp. 299-301
Author(s):  
Raphael Sadoun ◽  
Emilio Romano-Daz ◽  
Isaac Shlosman ◽  
Zheng Zheng

AbstractWe present results from high-resolution, zoom-in cosmological simulations to study the effect of feedback from galactic outflows on the physical and Lyα properties of high-redshift galaxies in highly overdense and normal environments at z >∼6. The Lyα properties have been obtained by post-processing the simulations with a Monte-Carlo radiative transfer (RT) code. Our results demonstrate that galactic outflows play an important role in regulating the growth of massive galaxies in overdense regions as well as the temperature and metallicity of the intergalactic medium. In particular, we find that galactic outflows are necessary to reproduce the observed Lyα luminosity functions as well as the apparent Lyα luminosity, line width and equivalent width distributions of luminous Lyα emitters at z ∼ 6.


2018 ◽  
Vol 620 ◽  
pp. A82 ◽  
Author(s):  
C. Circosta ◽  
V. Mainieri ◽  
P. Padovani ◽  
G. Lanzuisi ◽  
M. Salvato ◽  
...  

Theoretical models of galaxy formation suggest that the presence of an active galactic nucleus (AGN) is required to regulate the growth of its host galaxy through feedback mechanisms, produced by, for example, AGN-driven outflows. Although many observational studies have revealed that such outflows are common both at low and high redshift, a comprehensive picture is still missing. In particular, the peak epoch of galaxy assembly (1 <  z <  3) has been poorly explored so far, and current observations in this redshift range are mostly limited to targets with high chances to be in an outflowing phase. This paper introduces SUPER (a SINFONI Survey for Unveiling the Physics and Effect of Radiative feedback), an ongoing ESO’s VLT/SINFONI Large Programme. SUPER will perform the first systematic investigation of ionized outflows in a sizeable and blindly-selected sample of 39 X-ray AGN at z ∼ 2, which reaches high spatial resolutions (∼2 kpc) thanks to the adaptive optics-assisted IFS observations. The outflow morphology and star formation in the host galaxy will be mapped through the broad component of [O III]λ5007 and the narrow component of Hα emission lines. The main aim of our survey is to infer the impact of outflows on the on-going star formation and to link the outflow properties to a number of AGN and host galaxy properties. We describe here the survey characteristics and goals, as well as the selection of the target sample. Moreover, we present a full characterization of its multi-wavelength properties: we measure, via spectral energy distribution fitting of UV-to-FIR photometry, stellar masses (4 × 109 − 2 × 1011 M⊙), star formation rates (25 − 680 M⊙ yr−1) and AGN bolometric luminosities (2 × 1044 − 8 × 1047 erg s−1), along with obscuring column densities (up to 2 × 1024 cm−2) and luminosities in the hard 2 − 10 keV band (2 × 1043 − 6 × 1045 erg s−1) derived through X-ray spectral analysis. Finally, we classify our AGN as jetted or non-jetted according to their radio and FIR emission.


Sign in / Sign up

Export Citation Format

Share Document