scholarly journals Orbital eccentricity–multiplicity correlation for planetary systems and comparison to the Solar system

2020 ◽  
Vol 500 (1) ◽  
pp. 1313-1322
Author(s):  
Nanna Bach-Møller ◽  
Uffe G Jørgensen

ABSTRACT The orbit eccentricities of the Solar system planets are unusually low compared to the average of known exoplanetary systems. A power-law correlation has previously been found between the multiplicity of a planetary system and the orbital eccentricities of its components, for systems with multiplicities above two. In this study we investigate the correlation for an expanded data sample by focusing on planetary systems as units (unlike previous studies that have focused on individual planets). Our full data sample contains 1171 exoplanets, in 895 systems, and the correlation between eccentricity and multiplicity is found to follow a clear power law for all multiplicities above one. We discuss the correlation for several individual subsamples and find that all samples consistently follow the same basic trend regardless of e.g. planet types and detection methods. We find that the eccentricities of the Solar system fit the general trend and suggest that the Solar system might not show uncommonly low eccentricities (as often speculated) but rather uncommonly many planets compared to a ‘standard’ planetary system. The only outlier from the power-law correlation is, consistently in all the samples, the one-planet systems. It has previously been suggested that this may be due to additional unseen exoplanets in the observed one-planet systems. Based on this assumption and the power-law correlation, we estimate that the probability of a system having eight planets or more is of the order of 1 per cent, in good agreement with recent predictions from analyses based on independent arguments.

2014 ◽  
Vol 112 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Mary Anne Limbach ◽  
Edwin L. Turner

The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.


2010 ◽  
Vol 6 (S276) ◽  
pp. 304-307
Author(s):  
Melvyn B. Davies

AbstractMany stars are formed in some form of cluster or association. These environments can have a much higher number density of stars than the field of the galaxy. Such crowded places are hostile environments: a large fraction of initially single stars will undergo close encounters with other stars or exchange into binaries. We describe how such close encounters and exchange encounters will affect the properties of a planetary system around a single star. We define singletons as single stars which have never suffered close encounters with other stars or spent time within a binary system. It may be that planetary systems similar to our own solar system can only survive around singletons. Close encounters or the presence of a stellar companion will perturb the planetary system, leading to strong planet-planet interactions, often leaving planets on tighter and more eccentric orbits. Thus, planetary systems which initially resembled our own solar system may later more closely resemble the observed extrasolar planetary systems.


2021 ◽  
Vol 648 ◽  
pp. L2 ◽  
Author(s):  
Václav Pavlík ◽  
Steven N. Shore

Aims. We aim to investigate the consequences of a fast massive stellar remnant – a black hole (BH) or a neutron star (NS) – encountering a planetary system. Methods. We modelled a close encounter between the actual Solar System (SS) and a 2 M⊙ NS and a 10 M⊙ BH, using a few-body symplectic integrator. We used a range of impact parameters, orbital phases at the start of the simulation derived from the current SS orbital parameters, encounter velocities, and incidence angles relative to the plane of the SS. Results. We give the distribution of possible outcomes, such as when the SS remains bound, when it suffers a partial or complete disruption, and in which cases the intruder is able to capture one or more planets, yielding planetary systems around a BH or a NS. We also show examples of the long-term stability of the captured planetary systems.


2019 ◽  
Vol 488 (1) ◽  
pp. 1366-1376 ◽  
Author(s):  
Daohai Li ◽  
Alexander J Mustill ◽  
Melvyn B Davies

ABSTRACTStars formed in clusters can encounter other stars at close distances. In typical open clusters in the Solar neighbourhood containing hundreds or thousands of member stars, 10–20 per cent of Solar-mass member stars are expected to encounter another star at distances closer than 100 au. These close encounters strongly perturb the planetary systems, directly causing ejection of planets or their capture by the intruding star, as well as exciting the orbits. Using extensive N-body simulations, we study such fly-by encounters between two Solar system analogues, each with four giant planets from Jupiter to Neptune. We quantify the rates of loss and capture immediately after the encounter, e.g. the Neptune analogue is lost in one in four encounters within 100 au, and captured by the flying-by star in 1 in 12 encounters. We then perform long-term (up to 1 Gyr) simulations investigating the ensuing post-encounter evolution. We show that large numbers of planets are removed from systems due to planet–planet interactions and that captured planets further enhance the system instability. While encounters can initially leave a planetary system containing more planets by inserting additional ones, the long-term instability causes a net reduction in planet number. A captured planet ends up on a retrograde orbit in half of the runs in which it survives for 1Gyr; also, a planet bound to its original host star but flipped during the encounter may survive. Thus, encounters between planetary systems are a channel to create counter-rotating planets, This would happen in around 1 per cent of systems, and such planets are potentially detectable through astrometry or direct imaging.


2007 ◽  
Vol 3 (S246) ◽  
pp. 273-274
Author(s):  
D. Malmberg ◽  
M. B. Davies ◽  
J. E. Chambers ◽  
F. De Angeli ◽  
R. P. Church ◽  
...  

AbstractMost stars are formed in a cluster or association, where the number density of stars can be high. This means that a large fraction of initially-single stars will undergo close encounters with other stars and/or exchange into binaries. We describe how such close encounters and exchange encounters can affect the properties of a planetary system around a single star. We define a singleton as a single star which has never suffered close encounters with other stars or spent time within a binary system. It may be that planetary systems similar to our own solar system can only survive around singletons. Close encounters or the presence of a stellar companion will perturb the planetary system, often leaving planets on tighter and more eccentric orbits. Thus planetary systems which initially resembled our own solar system may later more closely resemble some of the observed exoplanet systems.


1999 ◽  
Vol 172 ◽  
pp. 313-316
Author(s):  
Pawel Artymowicz

AbstractThe past decade brought direct evidence of the previously surmised exoplanetary systems. A variety of planetary system types exist those around pulsars, around both young and old main-sequence stars (as evidenced by planetesimal disks of the Beta Pictoris-type), and the mature giant exoplanets found in radial velocity surveys. The surprising diversity of the exoplanetary systems is addressed by several theories of their origin.


2011 ◽  
Vol 7 (S282) ◽  
pp. 429-436
Author(s):  
Wilhelm Kley

AbstractThe formation of planetary systems is a natural byproduct of the star formation process. Planets can form inside the protoplanetary disk by two alternative processes. Either through a sequence of sticking collisions, the so-called sequential accretion scenario, or via gravitational instability from an over-dense clump inside the protoplanetary disk. The first process is believed to have occurred in the solar system. The most important steps in this process will be outlined. The observed orbital properties of exoplanetary systems are distinctly different from our own Solar System. In particular, their small distance from the star, their high eccentricity and large mass point to the existence of a phase with strong mutual excitations. These are believed to be a result of early evolution of planets due to planet-disk interaction. The importance of this process in shaping the dynamical structure of planetary systems will be presented.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Aline A. Vidotto

AbstractHow has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activity. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.


2006 ◽  
Vol 2 (S236) ◽  
pp. 77-84
Author(s):  
Jianghui Ji ◽  
L. Liu ◽  
G. Y. Li

AbstractWe investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular resonances ν1 and ν2 (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21≤ a <0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50≤ a ≤1.00 AU, and there exist all stable orbits last up to 105 yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.


2020 ◽  
Vol 636 ◽  
pp. A53 ◽  
Author(s):  
D. Turrini ◽  
A. Zinzi ◽  
J. A. Belinchon

Context. Population studies of the orbital characteristics of exoplanets in multi-planet systems have highlighted the existence of an anticorrelation between the average orbital eccentricity of planets and the number of planets of their host system, that is, its multiplicity. This effect was proposed to reflect the varying levels of violence in the dynamical evolution of planetary systems. Aims. Previous work suggested that the relative violence of the dynamical evolution of planetary systems with similar orbital architectures can be compared through the computation of their angular momentum deficit (AMD). We investigated the possibility of using a more general metric to perform analogous comparisons between planetary systems with different orbital architectures. Methods. We considered a modified version of the AMD, the normalized angular momentum deficit (NAMD), and used it to study a sample of 99 multi-planet systems containing both the currently best-characterized extrasolar systems and the solar system, that is, planetary systems with both compact and wide orbital architectures. Results. We verified that the NAMD allows us to compare the violence of the dynamical histories of multi-planet systems with different orbital architectures. We identified an anticorrelation between the NAMD and the multiplicity of the planetary systems, of which the previously observed eccentricity–multiplicity anticorrelation is a reflection. Conclusions. Our results seem to indicate that phases of dynamical instabilities and chaotic evolution are not uncommon among planetary systems. They also suggest that the efficiency of the planetary formation process in producing high-multiplicity systems is likely to be higher than that suggested by their currently known population.


Sign in / Sign up

Export Citation Format

Share Document