scholarly journals The evolution of the solar wind

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Aline A. Vidotto

AbstractHow has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activity. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.

2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


2020 ◽  
Vol 240 ◽  
pp. 07011
Author(s):  
Kushagra Shrivastava ◽  
Keith Wen Kai Chia ◽  
Kang Jun Wong ◽  
Alfred Yong Liang Tan ◽  
Hwee Tiang Ning

Solar activity research provides insight into the Sun’s past, future (Science Daily, 2018). The solar activity includes observations of large numbers of intense sunspots, flares, and other phenomena; and demands a wide range of techniques and measurements on the observations. This research needs long term data collection before critical analyses can occur, to generate meaningful learning and knowledge. In this project, we will use solar imaging to make observations of solar activity, and take our baby steps to make contributions in citizen science. Observations will be made in 3 wavelengths to gain a more thorough analysis by looking at different perspectives of the Sun, namely H-Alpha, Calcium-K, and white light.


2017 ◽  
Author(s):  
Jason T. Wright ◽  
Michael P. Oman-Reagan

We discuss how visions for the futures of humanity in space and SETI are intertwined, and are shaped by prior work in the fields and by science fiction. This appears in the language used in the fields, and in the sometimes implicit assumptions made in discussions of them. We give examples from articulations of the so-called Fermi Paradox, discussions of the settlement of the Solar System (in the near future) and the Galaxy (in the far future), and METI. We argue that science fiction, especially the campy variety, is a significant contributor to the ‘giggle factor’ that hinders serious discussion and funding for SETI and Solar System settlement projects. We argue that humanity's long-term future in space will be shaped by our short-term visions for who goes there and how. Because of the way they entered the fields, we recommend avoiding the term ‘colony’ and its cognates when discussing the settlement of space, as well as other terms with similar pedigrees. We offer examples of science fiction and other writing that broaden and challenge our visions of human futures in space and SETI. In an appendix, we use an analogy with the well-funded and relatively uncontroversial searches for the dark matter particle to argue that SETI's lack of funding in the national science portfolio is primarily a problem of perception, not inherent merit.Also on arXiv: https://arxiv.org/abs/1708.05318Please cite this version:Wright, Jason T., and Michael P. Oman-Reagan. “Visions of Human Futures in Space and SETI.” International Journal of Astrobiology, 2017, 1–12. doi:10.1017/S1473550417000222.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012038
Author(s):  
S Veretenenko ◽  
M Ogurtsov ◽  
V Obridko ◽  
A Tlatov

Abstract Long-term evolution of areas with open configuration of magnetic field (coronal holes) on the Sun reconstructed on the basis of H-alpha synoptic charts for the period 1887-2016 was studied and compared with annual occurrence frequencies of magnetic storms with gradual (GC) commencements. It was found that correlation between yearly values of coronal hole (CH) areas and sunspot numbers with no time shift is negative and not strong, but increases up to ∼0.6-0.7 when CH areas are delayed by 4-5 years relative to sunspot numbers. Temporal variations of CH areas in the Northern and Southern hemispheres are characterized by dominant ∼11-year periodicities; however, they differ significantly on the multidecadal time scale. The wavelet spectra of CH areas in the Southern hemisphere, unlike those in the Northern one, reveal persistent periodicities of ∼30-35 years on the studied time interval. Similar periodicities of ∼30-35 years are observed in annual occurrences of GC magnetic storms which are caused by high-speed streams of solar wind from coronal holes. The results of cross wavelet analysis of annual occurrence frequencies of GC magnetic storms and areas of coronal holes revealed common periodicities ∼11, ∼35 and ∼60 years which confirmed a close link of these storms with the evolution of large-scale magnetic fields on the Sun.


2020 ◽  
Vol 638 ◽  
pp. A68 ◽  
Author(s):  
S. G. Heinemann ◽  
V. Jerčić ◽  
M. Temmer ◽  
S. J. Hofmeister ◽  
M. Dumbović ◽  
...  

Context. Understanding the evolution of coronal holes is especially important when studying the high-speed solar wind streams that emanate from them. Slow- and high-speed stream interaction regions may deliver large amounts of energy into the Earth’s magnetosphere-ionosphere system, cause geomagnetic storms, and shape interplanetary space. Aims. By statistically investigating the long-term evolution of well-observed coronal holes we aim to reveal processes that drive the observed changes in the coronal hole parameters. By analyzing 16 long-living coronal holes observed by the Solar Dynamic Observatory, we focus on coronal, morphological, and underlying photospheric magnetic field characteristics, and investigate the evolution of the associated high-speed streams. Methods. We use the Collection of Analysis Tools for Coronal Holes to extract and analyze coronal holes using 193 Å EUV observations taken by the Atmospheric Imaging Assembly as well as line–of–sight magnetograms observed by the Helioseismic and Magnetic Imager. We derive changes in the coronal hole properties and look for correlations with coronal hole evolution. Further, we analyze the properties of the high–speed stream signatures near 1AU from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. Results. We find that the area evolution of coronal holes shows a general trend of growing to a maximum followed by a decay. We did not find any correlation between the area evolution and the evolution of the signed magnetic flux or signed magnetic flux density enclosed in the projected coronal hole area. From this we conclude that the magnetic flux within the extracted coronal hole boundaries is not the main cause for its area evolution. We derive coronal hole area change rates (growth and decay) of (14.2 ± 15.0)×108 km2 per day showing a reasonable anti-correlation (ccPearson = −0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 ± 32.2 mG day−1) and the signed magnetic flux (30.3 ± 31.5 1018 Mx day−1) were also found to be dependent on solar activity (ccPearson = 0.50 and ccPearson = 0.69 respectively) rather than on the individual coronal hole evolutions. Further we find that the relation between coronal hole area and high-speed stream peak velocity is valid for each coronal hole over its evolution, but we see significant variations in the slopes of the regression lines.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5327 ◽  
Author(s):  
Byoungsuk Ji ◽  
Ellen J. Hong

In this paper, we propose a method for deep-learning-based real-time road traffic predictions using long-term evolution (LTE) access data. The proposed system generates a road traffic speed learning model based on road speed data and historical LTE data collected from a plurality of base stations located within a predetermined radius from the road. Real-time LTE data were the input for the generated learning model in order to predict the real-time speed of traffic. Since the system was developed using a time-series-based road traffic speed learning model based on LTE data from the past, it is possible for it to be used for a road where the environment has changed. Moreover, even on roads where the collection of traffic data is invalid, such as a radio shadow area, it is possible to directly enter real-time wireless communications data into the traffic speed learning model to predict the traffic speed on the road in real time, and in turn, raise the accuracy of real-time road traffic predictions.


2009 ◽  
Vol 5 (S268) ◽  
pp. 71-79 ◽  
Author(s):  
Johannes Geiss ◽  
George Gloeckler

AbstractFor our understanding of the origin and evolution of baryonic matter in the Universe, the Protosolar Cloud (PSC) is of unique importance in two ways: 1) Up to now, many of the naturally occurring nuclides have only been detected in the solar system. 2) Since the time of solar system formation, the Sun and planets have been virtually isolated from the galactic nuclear evolution, and thus the PSC is a galactic sample with a degree of evolution intermediate between the Big Bang and the present.The abundances of the isotopes of hydrogen and helium in the Protosolar Cloud are primarily derived from composition measurements in the solar wind, the Jovian atmosphere and “planetary noble gases” in meteorites, and also from observations of density profiles inside the Sun. After applying the changes in isotopic and elemental composition resulting from processes in the solar wind, the Sun and Jupiter, PSC abundances of the four lightest stable nuclides are given.


Sign in / Sign up

Export Citation Format

Share Document