scholarly journals Do we need non-ideal MHD to model protostellar discs?

Author(s):  
James Wurster

Abstract We investigate and discuss protostellar discs in terms of where the various non-ideal magnetohydrodynamics (MHD) processes are important. We find that the traditional picture of a magnetised disc (where Ohmic resistivity is dominant near the mid-plane, surrounded by a region dominated by the Hall effect, with the remainder of the disc dominated by ambipolar diffusion) is a great oversimplification. In simple parameterised discs, we find that the Hall effect is typically the dominant term throughout the majority of the disc. More importantly, we find that in much of our parameterised discs, at least two non-ideal processes have coefficients within a factor of 10 of one another, indicating that both are important and that naming a dominant term underplays the importance of the other terms. Discs that were self-consistently formed in our previous studies are also dominated by the Hall effect, and the ratio of ambipolar diffusion and Hall coefficients is typically less than 10, suggesting that both terms are equally important and listing a dominant term is misleading. These conclusions become more robust once the magnetic field geometry is taken into account. In agreement with the literature we review, we conclude that non-ideal MHD processes are important for the formation and evolution of protostellar discs. Ignoring any of the non-ideal processes, especially ambipolar diffusion and the Hall effect, yields an incorrect description of disc evolution.

2018 ◽  
Vol 14 (A30) ◽  
pp. 116-116
Author(s):  
Y. Tsukamoto ◽  
S. Okuzumi ◽  
K. Iwasaki ◽  
M. N. Machida ◽  
S. Inutsuka

AbstractIt has been recognized that non-ideal MHD effects (Ohmic diffusion, Hall effect, ambipolar diffusion) play crucial roles for the circumstellar disk formation and evolution. Ohmic and ambipolar diffusion decouple the gas and the magnetic field, and significantly reduces the magnetic torque in the disk, which enables the formation of the circumstellar disk (e.g., Tsukamoto et al. 2015b). They set an upper limit to the magnetic field strength of ∼ 0.1 G around the disk (Masson et al. 2016). The Hall effect notably changes the magnetic torques in the envelope around the disk, and strengthens or weakens the magnetic braking depending on the relative orientation of magnetic field and angular momentum. This suggests that the bimodal evolution of the disk size possibly occurs in the early disk evolutionary phase (Tsukamoto et al. 2015a, Tsukamoto et al. 2017). Hall effect and ambipolar diffusion imprint the possibly observable characteristic velocity structures in the envelope of Class 0/I YSOs. Hall effect forms a counter-rotating envelope around the disk. Our simulations show that counter rotating envelope has the size of 100–1000 au and a recent observation actually infers such a structure (Takakuwaet al. 2018). Ambipolar diffusion causes the significant ion-neutral drift in the envelopes. Our simulations show that the drift velocity of ion could become 100-1000 ms–1.


Author(s):  
E. Khomenko ◽  
M. Collados ◽  
N. Vitas ◽  
P. A. González-Morales

This paper presents the results of the analysis of three-dimensional simulations of solar magneto-convection that include the joint action of the ambipolar diffusion and the Hall effect. Three simulation runs are compared: one including both ambipolar diffusion and the Hall effect; one including only ambipolar diffusion and one without any of these two effects. The magnetic field is amplified from initial field to saturation level by the action of turbulent local dynamo. In each of these cases, we study 2 h of simulated solar time after the local dynamo reaches the saturation regime. We analyse the power spectra of vorticity, of magnetic field fluctuations and of the different components of the magnetic Poynting flux responsible for the transport of vertical or horizontal perturbations. Our preliminary results show that the ambipolar diffusion produces a strong reduction of vorticity in the upper chromospheric layers and that it dissipates the vortical perturbations converting them into thermal energy. The Hall effect acts in the opposite way, strongly enhancing the vorticity. When the Hall effect is included, the magnetic field in the simulations becomes, on average, more vertical and long-lived flux tube-like structures are produced. We trace a single magnetic structure to study its evolution pattern and the magnetic field intensification, and their possible relation to the Hall effect. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.


2017 ◽  
Vol 600 ◽  
pp. A114 ◽  
Author(s):  
Valeska Valdivia ◽  
Benjamin Godard ◽  
Patrick Hennebelle ◽  
Maryvonne Gerin ◽  
Pierre Lesaffre ◽  
...  

Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims. This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods. We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results. We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3−30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still ~ 3−10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around ~ 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Conclusions. Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.


2012 ◽  
Vol 10 (H16) ◽  
pp. 385-385
Author(s):  
C. Eswaraiah ◽  
G. Maheswar ◽  
A. K. Pandey

AbstractWe have performed both optical linear polarimetric and photometric observations of an isolated dark globule LDN 1570 aim to study the dust polarizing and extinction properties and to map the magnetic field geometry so as to understand not only the importance of magnetic fields in formation and evolution of clouds but also the correlation of the inferred magnetic field structure with the cloud structure and its dynamics. Dust size indicators (RV and λmax) reveal for the presence of slightly bigger dust grains towards the cloud region. The inferred magnetic field geometry, which closely follows the cloud structure revealed by Herschel images, suggest that the cloud could have been formed due to converging material flows along the magnetic field lines.


1987 ◽  
Vol 122 ◽  
pp. 137-139
Author(s):  
U. C. Joshi ◽  
P. V. Kulkarni ◽  
M. R. Deshpande ◽  
A. Sen ◽  
A. K. Kulshrestha

Polarization measurement of the background stars in the region of dark globules is important to study the magnetic field geometry and grants characteristics in the globule. These parameters are important for the formation and evolution of dark globules. We made Polarimetric observations of stars in three nearby dark clouds - B5, L134 and Heiles Cloud 2. Polarization measurements of stars in the region of B5 were made with ‘MINIPOL’ (Frecker and Serkowski, 1976) on 61″ telescope of University of Arizona. Observations for the stars in the region of L134 and Heiles Cloud 2 were made using PRL Polarimeter (Deshpande et al. 1985) on 1 meter telescope of Indian Institute of Astrophysics, Bangalore. Results are presented and discussed here. Figure 1 shows the polarization vectors projected on the sky plane for the above globules.


Author(s):  
Thomas W. Anderson ◽  
Nathaniel A. Clark ◽  
Wesley E. Kotz ◽  
Briana D. Stremick ◽  
O¨zer Arnas ◽  
...  

Recent additions of armor have made light tactical vehicle turrets heavy enough that mechanical assistance is required for them to rotate. The Army’s solution is the Battery Powered Motorized Traversing Unit (BPMTU) which uses a joystick to traverse the turret. Use of the joystick distracts the gunner and prevents the gunner from continuously engaging the target while rotating the turret. This paper presents a modification to the weapon mount that allows the turret to be controlled by the position of the weapon itself and emphasizes the design process used to develop the inovation. With this design, the gunner can now maintain contact with a target, while rotating the turret, without fiddling with the joystick. The Weapon Activated and Controlled Turret (WACT) consists of two primary components; the bottom component is stationary relative to the turret and contains a Hall effect sensor and the top component rotates with the weapon and holds a linear magnet. As the position of the sensor relative to the magnet changes, the corresponding strength of the magnetic field also varies. This change in magnetic force induces a similar response in the output voltage of the Hall effect sensor, effectively translating rotational motion into an electric signal able to control the turret motor.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


1967 ◽  
Vol 22 (10) ◽  
pp. 1599-1612 ◽  
Author(s):  
Otto Klüber

A stationary discharge is produced bya current flowing parallel to the magnetic field ofa cylindrical coil. In the region where the field is homogeneous the pressure in the plasma column is much higher than that in the surrounding neutral gas. This is mainly caused by diamagnetic ring currents, as is shown by measuring the magnetic flux due to these currents. Two effects are primarily responsible for the ring currents in this region: The already known effect of the ambipolar diffusion across the magnetic field anda thermomagnetic effect, called NERNST effect, whose influence on the pressure build-up ofa plasma has not been investigated hitherto. Other phenomena causing ring currents occur in the plasma near the coil ends and outside the field coil.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


Author(s):  
Vladislav Sevostianov

The paper presents the concept of self-diagnosing smart bolts and its experimental validation. In the present research such bolts are designed, built, and experimentally tested. As a key element of the design, wires of Galfenol (alloy of iron and gallium) are used. This material shows magnetostrictive properties, and, at the same time, is sufficiently ductile to follow typical deformation of rock bolts, and is economically affordable. Two types of Galfenol were used: Ga10Fe90 and Ga17Fe83. The wires have been installed in bolts using two designs — in a drilled central hole or in a cut along the side — and the bolts were tested for generation of the magnetic field under three-point bending loading. To measure the magnetic field in the process of deformation, a magnetometer that utilizes the GMR effect was designed, built, and compared with one utilizing the Hall effect. It is shown that (1) magnetic field generated by deformation of the smart bolts at the stress level of plastic deformation is sufficient to be noticed by the proposed magnetometer; however, the magnetometer using Hall effect is insufficient; (2) Ga10Fe90 produces higher magnetic fields than Ga17Fe83; (3) the magnetic field in plastically bended bolts is relatively stable with time.


Sign in / Sign up

Export Citation Format

Share Document