Magnetostrictive Self-Diagnosing Smart Bolts

Author(s):  
Vladislav Sevostianov

The paper presents the concept of self-diagnosing smart bolts and its experimental validation. In the present research such bolts are designed, built, and experimentally tested. As a key element of the design, wires of Galfenol (alloy of iron and gallium) are used. This material shows magnetostrictive properties, and, at the same time, is sufficiently ductile to follow typical deformation of rock bolts, and is economically affordable. Two types of Galfenol were used: Ga10Fe90 and Ga17Fe83. The wires have been installed in bolts using two designs — in a drilled central hole or in a cut along the side — and the bolts were tested for generation of the magnetic field under three-point bending loading. To measure the magnetic field in the process of deformation, a magnetometer that utilizes the GMR effect was designed, built, and compared with one utilizing the Hall effect. It is shown that (1) magnetic field generated by deformation of the smart bolts at the stress level of plastic deformation is sufficient to be noticed by the proposed magnetometer; however, the magnetometer using Hall effect is insufficient; (2) Ga10Fe90 produces higher magnetic fields than Ga17Fe83; (3) the magnetic field in plastically bended bolts is relatively stable with time.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 130
Author(s):  
Konstantinos N. Gourgouliatos ◽  
Davide De Grandis ◽  
Andrei Igoshev

Neutron stars host the strongest magnetic fields that we know of in the Universe. Their magnetic fields are the main means of generating their radiation, either magnetospheric or through the crust. Moreover, the evolution of the magnetic field has been intimately related to explosive events of magnetars, which host strong magnetic fields, and their persistent thermal emission. The evolution of the magnetic field in the crusts of neutron stars has been described within the framework of the Hall effect and Ohmic dissipation. Yet, this description is limited by the fact that the Maxwell stresses exerted on the crusts of strongly magnetised neutron stars may lead to failure and temperature variations. In the former case, a failed crust does not completely fulfil the necessary conditions for the Hall effect. In the latter, the variations of temperature are strongly related to the magnetic field evolution. Finally, sharp gradients of the star’s temperature may activate battery terms and alter the magnetic field structure, especially in weakly magnetised neutron stars. In this review, we discuss the recent progress made on these effects. We argue that these phenomena are likely to provide novel insight into our understanding of neutron stars and their observable properties.


Author(s):  
Robert E. Newnham

The Lorentz force that a magnetic field exerts on a moving charge carrier is perpendicular to the direction of motion and to the magnetic field. Since both electric and thermal currents are carried by mobile electrons and ions, a wide range of galvanomagnetic and thermomagnetic effects result. The effects that occur in an isotropic polycrystalline metal are illustrated in Fig. 20.1. As to be expected, many more cross-coupled effects occur in less symmetric solids. The galvanomagnetic experiments involve electric field, electric current, and magnetic field as variables. The Hall Effect, transverse magnetoresistance, and longitudinal magnetoresistance all describe the effects of magnetic fields on electrical resistance. Analogous experiments on thermal conductivity are referred to as thermomagnetic effects. In this case the variables are heat flow, temperature gradient, and magnetic field. The Righi–Leduc Effect is the thermal Hall Effect in which magnetic fields deflect heat flow rather than electric current. The transverse thermal magnetoresistance (the Maggi–Righi–Leduc Effect) and the longitudinal thermal magnetoresistance are analogous to the two galvanomagnetic magnetoresistance effects. Additional interaction phenomena related to the thermoelectric and piezoresistance effects will be discussed in the next two chapters. In tensor form Ohm’s Law is . . .Ei = ρijJj , . . . where Ei is electrical field, Jj electric current density, and ρij the electrical resistivity in Ωm. In describing the effect of magnetic field on electrical resistance, we expand the resistivity in a power series in magnetic flux density B. B is used rather than the magnetic field H because the Lorentz force acting on the charge carriers depends on B not H.


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2566-2572 ◽  
Author(s):  
O. E. RAICHEV

The influence of magnetic fields on the electron spin in solids involves two basic mechanisms. First, any magnetic field introduces the Zeeman splitting of electron states, thereby modifying spin precession. Second, since the magnetic field affects the electron motion in the plane perpendicular to the field, the spin dynamics is also modified, owing to the spin-orbit interaction. The theory predicts, as a consequence of this influence, unusual properties of the intrinsic spin-Hall effect in two-dimensional systems in the presence of magnetic fields. This paper describes non-monotonic dependence of the spin-Hall conductivity on the magnetic field and its enhancement in the case of weak disorder, as well as multiple jumps of the spin-Hall conductivity owing to the topological transitions (abrupt changes of the Berry phase) induced by the parallel magnetic field.


1958 ◽  
Vol 36 (5) ◽  
pp. 527-538 ◽  
Author(s):  
Gaston Fischer ◽  
D. K. C. MacDonald

Magnetoresistance and Hall-effect measurements in InSb are described. This semiconductor has charge carriers with sufficiently long mean free paths, l, that it is possible, even at room temperature and with available magnetic fields, to obtain l/r values considerably greater than unity, r being the orbital radius of a charge carrier moving in the applied magnetic field. The classical two-band theory has been found to account rather well for the results up to the highest magnetic fields employed. A review of the underlying assumptions of this theory is presented, and simple formulae are derived which allow the concentrations and mobilities of both types of carriers to be calculated from the magnetic field dependence of the resistivity, ρH, and of the Hall-constant, AH. The parameter Λ ≡ [(AH−A0)/A0]/[(ρH−ρ0)/ρ0] provides a useful means to check the consistency of the theory and can give some indication of the variation of the mobilities with the magnetic field.


2021 ◽  
Author(s):  
Anand Lalwani ◽  
Ananth Saran Yalamarthy ◽  
Debbie Senesky ◽  
Maximillian Holliday ◽  
Hannah Alpert

Accurately sensing AC magnetic field signatures poses a series of challenges to commonly used Hall-effect sensors. In particular, induced voltage and lack of high-frequency spinning methods are bottlenecks in the measurement of AC magnetic fields. We describe a magnetic field measurement technique that can be implemented in two ways: 1) the current driving the Hall-effect sensor is oscillating at the same frequency as the magnetic field, and the signal is measured at the second harmonic of the magnetic field frequency, and 2) the frequency of the driving current is preset, and the measured frequency is the magnetic field frequency plus the frequency of the current. This method has potential advantages over traditional means of measuring AC magnetic fields used in power systems (e.g., motors, inverters), as it can reduce the components needed (subsequently reducing the overall cost and size) and is not frequency bandwidth limited by current spinning. The sensing technique produces no induced voltage and results in a low offset, thus preserving accuracy and precision in measurements. Experimentally, we have shown offset voltage values between 8 and 27 μT at frequencies ranging from 100 Hz to 1 kHz, validating the potential of this technique in both cases


2021 ◽  
Author(s):  
Anand Lalwani ◽  
Ananth Saran Yalamarthy ◽  
Debbie Senesky ◽  
Maximillian Holliday ◽  
Hannah Alpert

Accurately sensing AC magnetic field signatures poses a series of challenges to commonly used Hall-effect sensors. In particular, induced voltage and lack of high-frequency spinning methods are bottlenecks in the measurement of AC magnetic fields. We describe a magnetic field measurement technique that can be implemented in two ways: 1) the current driving the Hall-effect sensor is oscillating at the same frequency as the magnetic field, and the signal is measured at the second harmonic of the magnetic field frequency, and 2) the frequency of the driving current is preset, and the measured frequency is the magnetic field frequency plus the frequency of the current. This method has potential advantages over traditional means of measuring AC magnetic fields used in power systems (e.g., motors, inverters), as it can reduce the components needed (subsequently reducing the overall cost and size) and is not frequency bandwidth limited by current spinning. The sensing technique produces no induced voltage and results in a low offset, thus preserving accuracy and precision in measurements. Experimentally, we have shown offset voltage values between 8 and 27 μT at frequencies ranging from 100 Hz to 1 kHz, validating the potential of this technique in both cases


2011 ◽  
Vol 5 (3) ◽  
pp. 294-299
Author(s):  
Dirk Bähre ◽  
◽  
Kirsten Trapp ◽  
Ralf Tschuncky ◽  

Workpieces from ferromagnetic materials influenced by machining can build magnetic fields, which can cause problems in production or application. One of the assumed causes of magnetism occurring in cutting processes is the change in the material structure due to the impact of the tool. To study these influences, milling tests are carried out. The magnetic field is measured by means of sensors functioning on the basis of the Hall effect. The coherences between geometry, kinematics, technological parameters, time dependency, and the magnetisation characteristics of the workpiece are considered.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Sign in / Sign up

Export Citation Format

Share Document