scholarly journals Chemical diversity of super-Earths as a consequence of formation

2020 ◽  
Vol 493 (4) ◽  
pp. 4910-4924 ◽  
Author(s):  
Jennifer Scora ◽  
Diana Valencia ◽  
Alessandro Morbidelli ◽  
Seth Jacobson

ABSTRACT Recent observations of rocky super-Earths have revealed an apparent wider distribution of Fe/Mg ratios, or core to mantle ratios, than the planets in our Solar system. This study aims to understand how much of the chemical diversity in the super-Earth population can arise from giant impacts during planetary formation. Planet formation simulations have only recently begun to treat collisions more realistically in an attempt to replicate the planets in our Solar system. We investigate planet formation more generally by simulating the formation of rocky super-Earths with varying initial conditions using a version of symba, a gravitational N-body code, that incorporates realistic collisions. We track the maximum plausible change in composition after each impact. The final planets span a range of Fe/Mg ratios similar to the Solar system planets, but do not completely match the distribution in super-Earth data. We only form a few planets with minor iron-depletion, suggesting other mechanisms are at work. The most iron-rich planets have a lower Fe/Mg ratio than Mercury, and are less enriched than planets such as Kepler-100b. This indicates that further work on our understanding of planet formation and further improvement of precision of mass and radius measurements are required to explain planets at the extremes of this Fe/Mg distribution.

2004 ◽  
Vol 202 ◽  
pp. 159-166
Author(s):  
Shigeru Ida ◽  
Eiichiro Kokubo

Accretion of terrestrial planets and solid cores of jovian planets is discussed, based on the results of our N-body simulations. Protoplanets accrete from planetesimals through runaway and oligarchic growth until they become isolated. The isolation mass of protoplanets in terrestrial planet region is about 0.2 Earth mass, which suggests that in the final stage of terrestrial planet formation giant impacts between the protoplanets occur. On the other hand, the isolation mass in jovian planet region is about a few to 10 Earth masses, which may be massive enough to form a gas giant. Extending the above arguments to disks with various initial masses, we discuss diversity of planetary systems. We predict that the extrasolar planets so far discovered may correspond to the systems formed from disks with large initial masses and that the other disks with smaller masses, which are the majority of the disks, may form Earth-like planets.


2019 ◽  
Vol 491 (4) ◽  
pp. 5595-5620 ◽  
Author(s):  
Sanson T S Poon ◽  
Richard P Nelson ◽  
Seth A Jacobson ◽  
Alessandro Morbidelli

ABSTRACT The NASA’s Kepler mission discovered ∼700 planets in multiplanet systems containing three or more transiting bodies, many of which are super-Earths and mini-Neptunes in compact configurations. Using N-body simulations, we examine the in situ, final stage assembly of multiplanet systems via the collisional accretion of protoplanets. Our initial conditions are constructed using a subset of the Kepler five-planet systems as templates. Two different prescriptions for treating planetary collisions are adopted. The simulations address numerous questions: Do the results depend on the accretion prescription?; do the resulting systems resemble the Kepler systems, and do they reproduce the observed distribution of planetary multiplicities when synthetically observed?; do collisions lead to significant modification of protoplanet compositions, or to stripping of gaseous envelopes?; do the eccentricity distributions agree with those inferred for the Kepler planets? We find that the accretion prescription is unimportant in determining the outcomes. The final planetary systems look broadly similar to the Kepler templates adopted, but the observed distributions of planetary multiplicities or eccentricities are not reproduced, because scattering does not excite the systems sufficiently. In addition, we find that ∼1 per cent of our final systems contain a co-orbital planet pair in horseshoe or tadpole orbits. Post-processing the collision outcomes suggests that they would not significantly change the ice fractions of initially ice-rich protoplanets, but significant stripping of gaseous envelopes appears likely. Hence, it may be difficult to reconcile the observation that many low-mass Kepler planets have H/He envelopes with an in situ formation scenario that involves giant impacts after dispersal of the gas disc.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 586
Author(s):  
Che-Jui Chang ◽  
Jean-Fu Kiang

Strong flares and coronal mass ejections (CMEs), launched from δ-sunspots, are the most catastrophic energy-releasing events in the solar system. The formations of δ-sunspots and relevant polarity inversion lines (PILs) are crucial for the understanding of flare eruptions and CMEs. In this work, the kink-stable, spot-spot-type δ-sunspots induced by flux emergence are simulated, under different subphotospheric initial conditions of magnetic field strength, radius, twist, and depth. The time evolution of various plasma variables of the δ-sunspots are simulated and compared with the observation data, including magnetic bipolar structures, relevant PILs, and temperature. The simulation results show that magnetic polarities display switchbacks at a certain stage and then split into numerous fragments. The simulated fragmentation phenomenon in some δ-sunspots may provide leads for future observations in the field.


2021 ◽  
Author(s):  
Claudia Toci ◽  
Simone Ceppi ◽  
Nicolas Cuello ◽  
Giuseppe Lodato ◽  
Cristiano Longarini ◽  
...  

<p>Binaries and multiple systems are common among young stars (Reipurth et al. 2014). These stars are often surrounded by discs of gas and dust, formed due to the conservation of angular momentum of the collapsing cloud, thought to be the site of planet formation.<br />In the case of binary systems, three discs can form: an outer disc surrounding all the stars (called circumbinary disc), and two inner discs around the stars. As circumbinary planets have recently been discovered by Kepler (see e.g., Martin 2018, Bonavita & Desidera 2020), it is crucial to understand the dynamics and evolution of circumbinary discs to better understand the initial conditions of planet formation in multiple systems.<br />The GG Tau A system is an example of a young multiple T Tauri star. The binary is surrounded by a bright disc, observed in the continuum emission at different wavelengths (see e.g., Guilloteau et al. 1999; Dutrey et al. 2014; Phuong et al. 2020b) and in scattered light (e.g., Duchene et al. 2014, Keppler et al. 2020). The disc extends in the dust from 180 to 280 au from the center of mass, and in the gas up to 850 au. The inner (<180 au) part is depleted in gas and dust. Scattered light images show a complex structure in the inner part of the disc, with arcs and filamentary structures connecting the outer ring with the arcs and three shadows.<br />Two different configurations are possible fitting the proper motion data for the system: a co-planar case with a low eccentricity binary with a semi-major axis of 34 au, explored by Cazzoletti et al. 2017 and Keppler et al. 2020, and a misaligned case (i=30) with an eccentric binary (e=0.45) and a wider semimajor axis of 60 au (Aly et al.2018). At the state of the art, all these analyses focused on the gas dynamics only.<br />We will show the results of new 3D SPH simulations of dust and gas performed with the code PHANTOM, devised to test the two possible scenarios. We will describe the dynamics of the system in the two cases, comparing our models with observational results in order to better constraint the orbital parameter of the GG Tau A system. Our predictions will guide future observing campaigns and shed light on the complex evolution of discs in triple stellar systems.</p> <p> </p>


Author(s):  
Bryan Holler

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter; and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as any nonsatellite large enough to be rounded by its own gravity. Practically speaking, this means any nonsatellite with a diameter >400 km. In the trans-Neptunian region, there are more than 100 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the migration history of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others such as Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water ice on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of nonvolatile species, such as H2O (water), NH3 (ammonia), and organics provide valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 points to ancient cryovolcanism caused by internal differentiation of ice from rock. Organic material, formed through radiation processing of surface ices such as CH4, records the radiation histories of these objects as well as providing clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the >100 TNO dwarf planets are key to understanding the formation of the solar system and subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.


Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Charles K. Shearer ◽  
Steven B. Simon

The behavior of boron during the early evolution of the Solar System provides the foundation for how boron reservoirs become established in terrestrial planets. The abundance of boron in the Sun is depleted relative to adjacent light elements, a result of thermal nuclear reactions that destroy boron atoms. Extant boron was primarily generated by spallation reactions. In the initial materials condensing from the solar nebula, boron was predominantly incorporated into plagioclase. Boron abundances in the terrestrial planets exhibit variability, as illustrated by B/Be. During planetary formation and differentiation, boron is redistributed by fluids at low temperature and during crystallization of magma oceans at high temperature.


2018 ◽  
Vol 14 (S345) ◽  
pp. 390-392
Author(s):  
P. Ábrahám ◽  
Á. Kóspál ◽  
M. Kun ◽  
O. Fehér ◽  
G. Zsidi ◽  
...  

AbstractThe early evolution of Sun-like stars may be interspersed by energetic FU Orionis (FUor) type accretion outbursts. We analysed eight years of photometric and spectroscopic variability of V582 Aur, a bona fide FUor, in outburst. While the accretion rate derived from near-infrared measurements was constant, radical brightness changes occurred due to dust clumps crossing the line of sight. The brightness minima resemble the variability patterns of the UXor phenomenon. Orbiting density enhancements or short-lived clumps moving in and out of the line-of-sight may explain these observations. Our message is that during FUor outbursts the inner disk is a dynamically active place, affecting the initial conditions for planet formation.


Sign in / Sign up

Export Citation Format

Share Document