scholarly journals Searching for solar siblings in APOGEE and Gaia DR2 with N-body simulations

2020 ◽  
Vol 494 (2) ◽  
pp. 2268-2279 ◽  
Author(s):  
Jeremy J Webb ◽  
Natalie Price-Jones ◽  
Jo Bovy ◽  
Simon Portegies Zwart ◽  
Jason A S Hunt ◽  
...  

ABSTRACT We make use of APOGEE and $Gaia\,$ data to identify stars that are consistent with being born in the same association or star cluster as the Sun. We limit our analysis to stars that match solar abundances within their uncertainties, as they could have formed from the same giant molecular cloud (GMC) as the Sun. We constrain the range of orbital actions that solar siblings can have with a suite of simulations of solar birth clusters evolved in static and time-dependent tidal fields. The static components of each galaxy model are the bulge, disc, and halo, while the various time-dependent components include a bar, spiral arms, and GMCs. In galaxy models without GMCs, simulated solar siblings all have JR < 122 km $\rm s^{-1}$ kpc, 990 < Lz < 1986 km $\rm s^{-1}$ kpc, and 0.15 < Jz < 0.58 km $\rm s^{-1}$ kpc. Given the actions of stars in APOGEE and $Gaia\,$, we find 104 stars that fall within this range. One candidate in particular, Solar Sibling 1, has both chemistry and actions similar enough to the solar values that strong interactions with the bar or spiral arms are not required for it to be dynamically associated with the Sun. Adding GMCs to the potential can eject solar siblings out of the plane of the disc and increase their Jz, resulting in a final candidate list of 296 stars. The entire suite of simulations indicate that solar siblings should have JR < 122 km $\rm s^{-1}$ kpc, 353 < Lz < 2110 km $\rm s^{-1}$ kpc, and Jz < 0.8 km $\rm s^{-1}$ kpc. Given these criteria, it is most likely that the association or cluster that the Sun was born in has reached dissolution and is not the commonly cited open cluster M67.

1996 ◽  
Vol 174 ◽  
pp. 161-170 ◽  
Author(s):  
Sverre J. Aarseth

We describe some aspects of implementing star cluster simulations on HARP. The code NBODY4 employs the Hermite scheme with hierarchical block-steps for direct integration. The algorithms have been optimized for parallel processing with the eight pipeline HARP-2 delivering a peak performance of about 1.7 Gflops for N = 104 particles. Hard binaries are studied by KS regularization which also uses the Hermite scheme, whereas strong interactions between 3–5 particles are treated by chain regularization. Astrophysical processes modelled include mass loss by stellar evolution, two-body tidal interaction, Roche lobe mass transfer, common envelope evolution, magnetic braking and gravitational radiation. Consistent values of stellar radii and evolution type are obtained by fast look-up. A new formulation of collision outcomes yields blue stragglers and other exotic objects. Some recent results for an open cluster model are presented.


2006 ◽  
Vol 2 (S239) ◽  
pp. 314-316 ◽  
Author(s):  
Achim Weiss ◽  
Martin Flaskamp

AbstractThe non-local, time-dependent convection theory of Kuhfuß (1986) in both its one- and three-equation form has been implemented in the Garching stellar evolution code. We present details of the implementation and the difficulties encountered. Specific test cases have been calculated, among them a 5 M⊙ star and the Sun. These cases point out deficits of the theory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.


2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


2021 ◽  
Vol 502 (1) ◽  
pp. L90-L94
Author(s):  
F A Ferreira ◽  
W J B Corradi ◽  
F F S Maia ◽  
M S Angelo ◽  
J F C Santos

ABSTRACT We report the discovery of 34 new open clusters and candidates as a result of a systematic search carried out in 200 adjacent fields of 1 × 1 deg2 area projected towards the Galactic bulge, using Gaia DR2 data. The objects were identified and characterized by a joint analysis of their photometric, kinematic, and spatial distribution that has been consistently used and proved to be effective in our previous works. The discoveries were validated by cross-referencing the objects position and astrometric parameters with the available literature. Besides their coordinates and astrometric parameters, we also provide sizes, ages, distances, and reddening for the discovered objects. In particular, 32 clusters are closer than 2 kpc from the Sun, which represents an increment of nearly $39{{\ \rm per\ cent}}$ of objects with astrophysical parameters determined in the nearby inner disc. Although these objects fill an important gap in the open clusters distribution along the Sagittarius arm, this arm, traced by known clusters, appears to be interrupted, which may be an artefact due to the incompleteness of the cluster census.


2020 ◽  
Vol 643 ◽  
pp. A115 ◽  
Author(s):  
Louise Breuval ◽  
Pierre Kervella ◽  
Richard I. Anderson ◽  
Adam G. Riess ◽  
Frédéric Arenou ◽  
...  

Aims. Classical Cepheids provide the foundation for the empirical extragalactic distance ladder. Milky Way Cepheids are the only stars in this class accessible to trigonometric parallax measurements. However, the parallaxes of Cepheids from the second Gaia data release (GDR2) are affected by systematics because of the absence of chromaticity correction, and occasionally by saturation. Methods. As a proxy for the parallaxes of 36 Galactic Cepheids, we adopt either the GDR2 parallaxes of their spatially resolved companions or the GDR2 parallax of their host open cluster. This novel approach allows us to bypass the systematics on the GDR2 Cepheids parallaxes that is induced by saturation and variability. We adopt a GDR2 parallax zero-point (ZP) of −0.046 mas with an uncertainty of 0.015 mas that covers most of the recent estimates. Results. We present new Galactic calibrations of the Leavitt law in the V, J, H, KS, and Wesenheit WH bands. We compare our results with previous calibrations based on non-Gaia measurements and compute a revised value for the Hubble constant anchored to Milky Way Cepheids. Conclusions. From an initial Hubble constant of 76.18 ± 2.37 km s−1 Mpc−1 based on parallax measurements without Gaia, we derive a revised value by adopting companion and average cluster parallaxes in place of direct Cepheid parallaxes, and we find H0 = 72.8 ± 1.9 (statistical + systematics) ±1.9 (ZP) km s−1 Mpc−1 when all Cepheids are considered and H0 = 73.0 ± 1.9 (statistical + systematics) ±1.9 (ZP) km s−1 Mpc−1 for fundamental mode pulsators only.


2021 ◽  
Vol 57 (2) ◽  
pp. 381-389
Author(s):  
Y. H. M. Hendy ◽  
D. Bisht

We present a detailed photometric and kinematical analysis of the poorly studied open cluster IC 1434 using CCD VRI, APASS, and Gaia DR2 database for the first time. By determining the membership probability of stars we identify the 238 most probable members with a probability higher than 60%; by using proper motion and parallax data as taken from the Gaia DR2 catalog. The mean proper motion of the cluster is obtained as μx=−3.89±0.19 and μy=−3.34±0.19 mas yr−1 in both the directions of right ascension and declination. The radial distribution of member stars provides the cluster extent as 7.6 arcmin. We estimate the interstellar reddening E(B−V) as 0.34 mag using the transformation equations from the literature. We obtain the values of cluster age and distance as 631±73 Myr and 3.2±0.1 kpc.


2020 ◽  
Vol 495 (1) ◽  
pp. 1349-1359 ◽  
Author(s):  
L Yalyalieva ◽  
G Carraro ◽  
R Vazquez ◽  
L Rizzo ◽  
E Glushkova ◽  
...  

ABSTRACT We present and discuss photometric optical data in the area of the OB association Sco OB1 covering about 1 deg2. UBVI photometry is employed in tandem with Gaia DR2 data to investigate the three-dimensional structure and the star formation history of the region. By combining parallaxes and proper motions, we identify seven physical groups located between the young open cluster NGC 6231 and the bright nebula IC 4628. The most prominent group coincides with the sparse open cluster Trumpler 24. We confirm the presence of the intermediate-age star cluster VdB-Hagen 202, which is unexpected in this environment, and provide for the first time estimates of its fundamental parameters. After assessing individual groups membership, we derive mean proper motion components, distances, and ages. The seven groups belong to two different families. To the younger family (family I) belong several pre-main-sequence (PMS) stars as well. These are evenly spread across the field, and also in front of VdB-Hagen 202. VdB-Hagen 202, and two smaller, slightly detached, groups of similar properties form family II, which do not belong to the association, but are caught in the act of passing through it. As for the younger population, this forms an arc-like structure from the bright nebula IC 4628 down to NGC 6231, as previously found. Moreover, the PMS stars density seems to increase from NGC 6231 northward to Trumpler 24.


2020 ◽  
Vol 496 (2) ◽  
pp. 1845-1856
Author(s):  
Luis A Martinez-Medina ◽  
Barbara Pichardo ◽  
Antonio Peimbert

ABSTRACT Within rotation curves (RCs) is encoded the kinematical state of the stellar disc as well as information about the dynamical mechanisms driving the secular evolution of galaxies. To explain the characteristic features of RCs which arise by the influence of spiral patterns and bar, we study the kinematics of the stellar disc in a set of spiral galaxy models specifically tailored for this purpose. We find that, for our models, the induced non-circular motions are more prominent for spirals with larger pitch angle, the ones typical in late-type galaxies. Moreover, inside corotation, stars rotate slower along the spiral arms than along the interarm, which translates into a local minima or maxima in the RC, respectively. We also see, from off-plane RC, that the rotation is faster for stars that at observed closer to the plane, and diminishes as one looks farther off plane; this trend is more noticeable in our Sa galaxy model than our Sc galaxy model. Additionally, in a previous work we found that the diagonal ridges in the Vϕ–R plane, revealed through the GaiaDR2, have a resonant origin due to the spiral arms and bar and that these ridges project themselves as wiggles in the RC; here, we further notice that the development of these ridges, and the development of high orbital eccentricities in the stellar disc are the same. Hence, we conclude that, the following explanations of bumps and wiggles in RCs are equivalent: they are manifestations of diagonal ridges in the Vϕ–R plane, or of the rearrangement of the orbital eccentricities in the stellar disc.


1991 ◽  
Vol 147 ◽  
pp. 221-228
Author(s):  
P. C. Myers

The properties and structure of six molecular complexes within 500 pc of the Sun are described and compared. They are generally organized into elongated filaments which appear connected to less elongated, more massive clouds. Their prominent star clusters tend to be located in the massive clouds rather than in the filaments. The complexes have similar structure, but big differences in scale, from a few pc to some 30 pc. They show a pattern of regional virial equilibrium, where the massive, centrally located clouds are close to virial equilibrium, while the less massive filaments and other small clouds have too little mass to bind their observed internal motions. Complexes can be ranked according to increasing size, mass, core mass, and the mass and number of the associated stars: they range from Lupus to Taurus to Ophiuchus to Perseus to Orion B to Orion A. The cores in nearby complexes tend to have maps which are elongated, rather than round. The core size, velocity dispersion, and column density of most cores are consistent with virial equilibrium. Cores in Orion tend to exceed cores in Taurus in their line width, size, temperature, mass, and in the mass of the associated star, if any. Stars in Orion tend to be more numerous and more massive than in Taurus, while those in Taurus tend to be more numerous and more massive than in Lupus. The mass of a core tends to increase with the mass of the cloud where it is found, with the mass of the star cluster with which it is associated, and with its proximity to a star cluster. These properties suggest that complexes and their constituent cores and clusters develop together over time, perhaps according to the depth of the gravitational well of the complex.


Sign in / Sign up

Export Citation Format

Share Document