scholarly journals STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354

2020 ◽  
Vol 494 (4) ◽  
pp. 6072-6102 ◽  
Author(s):  
A J Shajib ◽  
S Birrer ◽  
T Treu ◽  
A Agnello ◽  
E J Buckley-Geer ◽  
...  

ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ time-delay distance corresponding to the redshifts of the deflector and the lensed quasar $D_{\Delta t}^{\rm eff}=$$3382_{-115}^{+146}$ Mpc and the angular diameter distance to the deflector Dd = $1711_{-280}^{+376}$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $74.2_{-3.0}^{+2.7}$ km s−1 Mpc−1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2σ discrepancy from the cosmic microwave background measurement.

2020 ◽  
Vol 501 (1) ◽  
pp. 784-801 ◽  
Author(s):  
Philipp Denzel ◽  
Jonathan P Coles ◽  
Prasenjit Saha ◽  
Liliya L R Williams

ABSTRACT We present a determination of the Hubble constant from the joint, free-form analysis of eight strongly, quadruply lensing systems. In the concordance cosmology, we find $H_0{} = 71.8^{+3.9}_{-3.3}\, \mathrm{km}\, \mathrm{s}^{-1}\, \mathrm{Mpc}^{-1}{}{}$ with a precision of $4.97{{\ \rm per\ cent}}$. This is in agreement with the latest measurements from supernovae Type Ia and Planck observations of the cosmic microwave background. Our precision is lower compared to these and other recent time-delay cosmography determinations, because our modelling strategies reflect the systematic uncertainties of lensing degeneracies. We furthermore are able to find reasonable lensed image reconstructions by constraining to either value of H0 from local and early Universe measurements. This leads us to conclude that current lensing constraints on H0 are not strong enough to break the ‘Hubble tension’ problem of cosmology.


2019 ◽  
Vol 490 (1) ◽  
pp. 1406-1414 ◽  
Author(s):  
Suresh Kumar ◽  
Rafael C Nunes ◽  
Santosh Kumar Yadav

ABSTRACT Dark matter (DM) as a pressureless perfect fluid provides a good fit of the standard Λ cold dark matter (ΛCDM) model to the astrophysical and cosmological data. In this paper, we investigate two extended properties of DM: a possible time dependence of the equation of state of DM via Chevallier–Polarski–Linder parametrization, wdm = wdm0 + wdm1(1 − a), and the constant non-null sound speed $\hat{c}^2_{\rm s,dm}$. We analyse these DM properties on top of the base ΛCDM model by using the data from Planck cosmic microwave background (CMB) temperature and polarization anisotropy, baryonic acoustic oscillations (BAOs), and the local value of the Hubble constant from the Hubble Space Telescope (HST). We find new and robust constraints on the extended free parameters of DM. The most tight constraints are imposed by CMB+BAO data, where the three parameters wdm0, wdm1, and $\hat{c}^2_{\rm s,dm}$ are, respectively, constrained to be less than 1.43 × 10−3, 1.44 × 10−3, and 1.79 × 10−6 at 95 per cent CL. All the extended parameters of DM show consistency with zero at 95 per cent CL, indicating no evidence beyond the CDM paradigm. We notice that the extended properties of DM significantly affect several parameters of the base ΛCDM model. In particular, in all the analyses performed here, we find significantly larger mean values of H0 and lower mean values of σ8 in comparison to the base ΛCDM model. Thus, the well-known H0 and σ8 tensions might be reconciled in the presence of extended DM parameters within the ΛCDM framework. Also, we estimate the warmness of DM particles as well as its mass scale, and find a lower bound: ∼500 eV from our analyses.


2019 ◽  
Vol 631 ◽  
pp. A161 ◽  
Author(s):  
S. Huber ◽  
S. H. Suyu ◽  
U. M. Noebauer ◽  
V. Bonvin ◽  
D. Rothchild ◽  
...  

The upcoming Large Synoptic Survey Telescope (LSST) will detect many strongly lensed Type Ia supernovae (LSNe Ia) for time-delay cosmography. This will provide an independent and direct way for measuring the Hubble constant H0, which is necessary to address the current 4.4σ tension in H0 between the local distance ladder and the early Universe measurements. We present a detailed analysis of different observing strategies (also referred to as cadence strategy) for the LSST, and quantify their impact on time-delay measurement between multiple images of LSNe Ia. For this, we simulated observations by using mock LSNe Ia for which we produced mock-LSST light curves that account for microlensing. Furthermore, we used the free-knot splines estimator from the software PyCS to measure the time delay from the simulated observations. We find that using only LSST data for time-delay cosmography is not ideal. Instead, we advocate using LSST as a discovery machine for LSNe Ia, enabling time delay measurements from follow-up observations from other instruments in order to increase the number of systems by a factor of 2–16 depending on the observing strategy. Furthermore, we find that LSST observing strategies, which provide a good sampling frequency (the mean inter-night gap is around two days) and high cumulative season length (ten seasons with a season length of around 170 days per season), are favored. Rolling cadences subdivide the survey and focus on different parts in different years; these observing strategies trade the number of seasons for better sampling frequency. In our investigation, this leads to half the number of systems in comparison to the best observing strategy. Therefore rolling cadences are disfavored because the gain from the increased sampling frequency cannot compensate for the shortened cumulative season length. We anticipate that the sample of lensed SNe Ia from our preferred LSST cadence strategies with rapid follow-up observations would yield an independent percent-level constraint on H0.


2012 ◽  
Vol 8 (S289) ◽  
pp. 3-9 ◽  
Author(s):  
Wendy L. Freedman

AbstractTwenty years ago, there was disagreement at a level of a factor of two as regards the value of the expansion rate of the Universe. Ten years ago, a value that was good to 10% was established using the Hubble Space Telescope (HST), completing one of the primary missions that NASA designed and built the HST to undertake. Today, after confronting most of the systematic uncertainties listed at the end of the Key Project, we are looking at a value of the Hubble constant that is plausibly known to within 3%. In the near future, an independently determined value of H0 good to 1% is desirable to constrain the extraction of other cosmological parameters from the power spectrum of the cosmic microwave background in defining a concordance model of cosmology. We review recent progress and assess the future prospects for those tighter constraints on the Hubble constant, which were unimaginable just a decade ago.


2019 ◽  
Vol 498 (1) ◽  
pp. 1420-1439 ◽  
Author(s):  
Kenneth C Wong ◽  
Sherry H Suyu ◽  
Geoff C-F Chen ◽  
Cristian E Rusu ◽  
Martin Millon ◽  
...  

ABSTRACT We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analysed blindly with respect to the cosmological parameters. In a flat Λ cold dark matter (ΛCDM) cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73 to 78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints.


2019 ◽  
Vol 498 (1) ◽  
pp. 1440-1468 ◽  
Author(s):  
Cristian E Rusu ◽  
Kenneth C Wong ◽  
Vivien Bonvin ◽  
Dominique Sluse ◽  
Sherry H Suyu ◽  
...  

ABSTRACT We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033 − 4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 yr of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $4784_{-248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).


2020 ◽  
Vol 493 (4) ◽  
pp. 4783-4807 ◽  
Author(s):  
Akın Yıldırım ◽  
Sherry H Suyu ◽  
Aleksi Halkola

ABSTRACT We present a joint strong lensing and stellar dynamical framework for future time-delay cosmography purposes. Based on a pixelated source reconstruction and the axisymmetric Jeans equations, we are capable of constraining cosmological distances and hence the current expansion rate of the Universe (H0) to the few per cent level per lens, when high signal-to-noise integral field unit (IFU) observations from the next generation of telescopes become available. For illustrating the power of this method, we mock up IFU stellar kinematic data of the prominent lens system RXJ1131−1231, given the specifications of the James Webb Space Telescope. Our analysis shows that the time-delay distance (DΔt) can be constrained with 3.1 per cent uncertainty at best, if future IFU stellar kinematics are included in the fit and if the set of candidate model parametrizations contains the true lens potential. These constraints would translate to a 3.2 per cent precision measurement on H0 in flat ΛCDM cosmology from the single lens RXJ1131−1231, and can be expected to yield an H0 measure with ≤2.0 per cent uncertainty, if similar gains in precision can be reached for two additional lens systems. Moreover, the angular diameter distance (Dd) to RXJ1131−1231 can be constrained with 2.4 per cent precision, providing two distance measurements from a single lens system, which is extremely powerful to further constrain the matter density (Ωm). The measurement accuracy of Dd, however, is highly sensitive to any systematics in the measurement of the stellar kinematics. For both distance measurements, we strongly advise to probe a large set of physically motivated lens potentials in the future, to minimize the systematic errors associated with the lens mass parametrization.


1996 ◽  
Vol 175 ◽  
pp. 115-117
Author(s):  
R. W. Porcas ◽  
A. R. Patnaik

The gravitational lens system B0218+357 comprises 2 image components (A and B) and a radio ‘Einstein Ring’ (Patnaik et al, 1993). The redshift of the lens galaxy is 0.6847 (Browne et al, 1994) and that of the imaged source 0.96 (preliminary result; Lawrence et al, 1995). The separation of A and B, which are both flat-spectrum radio sources, is only 0.335 arcsec, leading to the hope that the lens is a single galaxy with a relatively simple mass distribution. Refsdal pointed out (1964) that a model of such a distribution, and a measurement of the time difference along the two image paths, leads to an estimate of the Hubble constant, independent of the usual steps in the distance ladder. B0218+357 is one of only a few lensed systems well suited for such measurements. A preliminary value of 12 days has been measured for the A-B time delay, derived from a comparison of the percentage polarisation variations of the images at 15GHz, using the VLA (Corbett et al, 1995).


2021 ◽  
Vol 21 (10) ◽  
pp. 261
Author(s):  
Wei-Jian Lu ◽  
Yi-Ping Qin

Abstract As the advent of precision cosmology, the Hubble constant (H 0) inferred from the Lambda Cold Dark Matter fit to the Cosmic Microwave Background data is increasingly in tension with the measurements from the local distance ladder. To approach its real value, we need more independent methods to measure, or to make constraint of, the Hubble constant. In this paper, we apply a plain method, which is merely based on the Friedman-Lemaître-Robertson-Walker cosmology together with geometrical relations, to constrain the Hubble constant by proper motions of radio components observed in AGN twin-jets. Under the assumption that the ultimate ejection strengths in both sides of the twin-jet concerned are intrinsically the same, we obtain a lower limit of H 0,min = 51.5 ± 2.3 km s−1 Mpc−1 from the measured maximum proper motions of the radio components observed in the twin-jet of NGC 1052.


2019 ◽  
Vol 490 (2) ◽  
pp. 1743-1773 ◽  
Author(s):  
Geoff C-F Chen ◽  
Christopher D Fassnacht ◽  
Sherry H Suyu ◽  
Cristian E Rusu ◽  
James H H Chan ◽  
...  

ABSTRACT We present the measurement of the Hubble constant, H0, with three strong gravitational lens systems. We describe a blind analysis of both PG 1115+080 and HE 0435−1223 as well as an extension of our previous analysis of RXJ 1131−1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP (Strong-lensing High Angular Resolution Programme) AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL-measured time delays in these systems to determine H0. We do both an AO-only and an AO + HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $H_{0}=82.8^{+9.4}_{-8.3}~\rm km\, s^{-1}\, Mpc^{-1}$ for PG 1115+080, $H_{0}=70.1^{+5.3}_{-4.5}~\rm km\, s^{-1}\, Mpc^{-1}$ for HE 0435−1223, and $H_{0}=77.0^{+4.0}_{-4.6}~\rm km\, s^{-1}\, Mpc^{-1}$ for RXJ 1131−1231. The joint AO-only result for the three lenses is $H_{0}=75.6^{+3.2}_{-3.3}~\rm km\, s^{-1}\, Mpc^{-1}$. The joint result of the AO + HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{-2.6}~\rm km\, s^{-1}\, Mpc^{-1}$. All of these results assume a flat Λ cold dark matter cosmology with a uniform prior on Ωm in [0.05, 0.5] and H0 in [0, 150] $\rm km\, s^{-1}\, Mpc^{-1}$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of H0. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper.


Sign in / Sign up

Export Citation Format

Share Document