scholarly journals H0LiCOW XII. Lens mass model of WFI2033 − 4723 and blind measurement of its time-delay distance and H0

2019 ◽  
Vol 498 (1) ◽  
pp. 1440-1468 ◽  
Author(s):  
Cristian E Rusu ◽  
Kenneth C Wong ◽  
Vivien Bonvin ◽  
Dominique Sluse ◽  
Sherry H Suyu ◽  
...  

ABSTRACT We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033 − 4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 yr of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $4784_{-248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).

2019 ◽  
Vol 490 (2) ◽  
pp. 1743-1773 ◽  
Author(s):  
Geoff C-F Chen ◽  
Christopher D Fassnacht ◽  
Sherry H Suyu ◽  
Cristian E Rusu ◽  
James H H Chan ◽  
...  

ABSTRACT We present the measurement of the Hubble constant, H0, with three strong gravitational lens systems. We describe a blind analysis of both PG 1115+080 and HE 0435−1223 as well as an extension of our previous analysis of RXJ 1131−1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP (Strong-lensing High Angular Resolution Programme) AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL-measured time delays in these systems to determine H0. We do both an AO-only and an AO + HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $H_{0}=82.8^{+9.4}_{-8.3}~\rm km\, s^{-1}\, Mpc^{-1}$ for PG 1115+080, $H_{0}=70.1^{+5.3}_{-4.5}~\rm km\, s^{-1}\, Mpc^{-1}$ for HE 0435−1223, and $H_{0}=77.0^{+4.0}_{-4.6}~\rm km\, s^{-1}\, Mpc^{-1}$ for RXJ 1131−1231. The joint AO-only result for the three lenses is $H_{0}=75.6^{+3.2}_{-3.3}~\rm km\, s^{-1}\, Mpc^{-1}$. The joint result of the AO + HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{-2.6}~\rm km\, s^{-1}\, Mpc^{-1}$. All of these results assume a flat Λ cold dark matter cosmology with a uniform prior on Ωm in [0.05, 0.5] and H0 in [0, 150] $\rm km\, s^{-1}\, Mpc^{-1}$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of H0. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper.


2020 ◽  
Vol 498 (3) ◽  
pp. 3241-3274 ◽  
Author(s):  
E J Buckley-Geer ◽  
H Lin ◽  
C E Rusu ◽  
J Poh ◽  
A Palmese ◽  
...  

ABSTRACT In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $\sim 3{{\ \rm per\ cent}}$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $\sim 1{{\ \rm per\ cent}}$, as long as no external shear constraints are imposed.


2018 ◽  
Vol 617 ◽  
pp. A140 ◽  
Author(s):  
Olivier Wertz ◽  
Bastian Orthen ◽  
Peter Schneider

The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0 with a competitive precision. However, the tension with H0 obtained from the Planck satellite for a spatially flat ΛCDM cosmology suggests that systematic errors may have been underestimated. The most critical of these errors probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim, we have used pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δtˆ/Δt ≈ βˆ/β, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for nonaxisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.


2020 ◽  
Vol 494 (4) ◽  
pp. 6072-6102 ◽  
Author(s):  
A J Shajib ◽  
S Birrer ◽  
T Treu ◽  
A Agnello ◽  
E J Buckley-Geer ◽  
...  

ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ time-delay distance corresponding to the redshifts of the deflector and the lensed quasar $D_{\Delta t}^{\rm eff}=$$3382_{-115}^{+146}$ Mpc and the angular diameter distance to the deflector Dd = $1711_{-280}^{+376}$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $74.2_{-3.0}^{+2.7}$ km s−1 Mpc−1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2σ discrepancy from the cosmic microwave background measurement.


Author(s):  
Xiaoyue Cao ◽  
Ran Li ◽  
James Nightingale ◽  
Richard Massey ◽  
Andrew Robertson ◽  
...  

Abstract The elliptical power-law (EPL) mass model of the mass in a galaxy is widely used in strong gravitational lensing analyses. However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model mismatch by simulating and then analysing mock {\it Hubble Space Telescope} imaging of lenses with mass distributions inferred from SDSS-MaNGA stellar dynamics data. We find accurate recovery of source galaxy morphology, except for a slight tendency to infer sources to be more compact than their true size. The Einstein radius of the lens is also robustly recovered with 0.1\% accuracy, as is the global density slope, with 2.5\% relative systematic error, compared to the 3.4\% intrinsic dispersion. However, asymmetry in real lenses also leads to a spurious fitted `external shear' with typical strength, $\gamma_{\rm ext}=0.015$. Furthermore, time delays inferred from lens modelling without measurements of stellar dynamics are typically underestimated by $\sim$5\%. Using such measurements from a sub-sample of 37 lenses would bias measurements of the Hubble constant $H_0$ by $\sim$9\%. The next generation cosmography must use more complex lens mass models.


2020 ◽  
Vol 642 ◽  
pp. A194 ◽  
Author(s):  
D. Gilman ◽  
S. Birrer ◽  
T. Treu

Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H0. The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H0. We base the mock lenses on six quadruply imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H0. However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses.


2012 ◽  
Vol 8 (S289) ◽  
pp. 331-338
Author(s):  
S. H. Suyu

AbstractThe time delays between the multiple images of a strong gravitational-lens system, together with a model of the lens-mass distribution, provide a one-step determination of the time-delay distance, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. I review the recent advances in measuring time-delay distances, and present the current status of cosmological constraints based on gravitational-lens time delays. In particular, I report the time-delay distance measurements of two gravitational lenses and their implication for cosmology from a recent study by Suyuet al.


2004 ◽  
Vol 29 (7) ◽  
pp. 727 ◽  
Author(s):  
Gerhard A. Blab ◽  
Silke Oellerich ◽  
Reinier Schumm ◽  
Thomas Schmidt

2019 ◽  
Vol 490 (2) ◽  
pp. 1913-1927
Author(s):  
Jenny Wagner ◽  
Sven Meyer

ABSTRACT We determine the cosmic expansion rate from supernovae of type Ia to set up a data-based distance measure that does not make assumptions about the constituents of the universe, i.e. about a specific parametrization of a Friedmann cosmological model. The scale, determined by the Hubble constant H0, is the only free cosmological parameter left in the gravitational lensing formalism. We investigate to which accuracy and precision the lensing distance ratio D is determined from the Pantheon sample. Inserting D and its uncertainty into the lensing equations for given H0, especially the time-delay equation between a pair of multiple images, allows to determine lens properties, especially differences in the lensing potential (Δϕ), without specifying a cosmological model. We expand the luminosity distances into an analytic orthonormal basis, determine the maximum-likelihood weights for the basis functions by a globally optimal χ2-parameter estimation, and derive confidence bounds by Monte Carlo simulations. For typical strong lensing configurations between z = 0.5 and 1.0, Δϕ can be determined with a relative imprecision of 1.7 per cent, assuming imprecisions of the time delay and the redshift of the lens on the order of 1 per cent. With only a small, tolerable loss in precision, the model-independent lens characterisation developed in this paper series can be generalised by dropping the specific Friedmann model to determine D in favour of a data-based distance ratio. Moreover, for any astrophysical application, the approach presented here, provides distance measures for z ≤ 2.3 that are valid in any homogeneous, isotropic universe with general relativity as theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document