scholarly journals Production and excitation of molecules by dissipation of two-dimensional turbulence

2020 ◽  
Vol 495 (1) ◽  
pp. 816-834
Author(s):  
P Lesaffre ◽  
P Todorov ◽  
F Levrier ◽  
V Valdivia ◽  
N Dzyurkevich ◽  
...  

ABSTRACT The interstellar medium (ISM) is typically a hostile environment: cold, dilute and irradiated. Nevertheless, it appears very fertile for molecules. The localized heating resulting from turbulence dissipation is a possible channel to produce and excite molecules. However, large-scale simulations cannot resolve the dissipative scales of the ISM. Here, we present two-dimensional small-scale simulations of decaying hydrodynamic turbulence using the chemses code, with fully resolved viscous dissipation, time-dependent heating, cooling, chemistry and excitation of a few rotational levels of H2. We show that molecules are produced and excited in the wake of strong dissipation ridges. We carefully identify shocks and we assess their statistics and contribution to the molecular yields and excitation. We find that the formation of molecules is strongly linked to increased density as a result of shock compression and to the opening of endothermic chemical routes because of higher temperatures. We identify a new channel for molecule production via H2 excitation, illustrated by CH+ yields in our simulations. Despite low temperatures and the absence of magnetic fields (favouring CH+ production through ion-neutral velocity drifts), the excitation of the first few rotational levels of H2 shrinks the energy gap to form CH+. The present study demonstrates how dissipative chemistry can be modelled by statistical collections of one-dimensional steady-state shocks. Thus, the excitation of higher J levels of H2 is likely to be a direct signature of turbulence dissipation, and an indirect probe for molecule formation. We hope these results will help to bring new tools and ideas for the interpretation of current observations of H2 rotational lines carried out using the Stratospheric Observatory for Infrared Astronomy (SOFIA), and pave the way for a better understanding of the high-resolution mapping of H2 emission by future instruments, such as theJames Webb Space Telescope and the Space Infrared Telescope for Cosmology and Astrophysics.

2000 ◽  
Vol 123 (4) ◽  
pp. 465-487 ◽  
Author(s):  
S. James ◽  
F.A. Jaberi

2012 ◽  
Vol 8 (S294) ◽  
pp. 361-363
Author(s):  
A. V. Getling ◽  
O. S. Mazhorova ◽  
O. V. Shcheritsa

AbstractConvection is simulated numerically based on two-dimensional Boussinesq equations for a fluid layer with a specially chosen stratification such that the convective instability is much stronger in a thin subsurface sublayer than in the remaining part of the layer. The developing convective flow has a small-scale component superposed onto a basic large-scale roll flow.


2003 ◽  
Vol 474 ◽  
pp. 299-318 ◽  
Author(s):  
JACQUES VANNESTE

The weakly nonlinear dynamics of quasi-geostrophic flows over a one-dimensional, periodic or random, small-scale topography is investigated using an asymptotic approach. Averaged (or homogenized) evolution equations which account for the flow–topography interaction are derived for both homogeneous and continuously stratified quasi-geostrophic fluids. The scaling assumptions are detailed in each case; for stratified fluids, they imply that the direct influence of the topography is confined within a thin bottom boundary layer, so that it is through a new bottom boundary condition that the topography affects the large-scale flow. For both homogeneous and stratified fluids, a single scalar function entirely encapsulates the properties of the topography that are relevant to the large-scale flow: it is the correlation function of the topographic height in the homogeneous case, and a linear transform thereof in the continuously stratified case.Some properties of the averaged equations are discussed. Explicit nonlinear solutions in the form of one-dimensional travelling waves can be found. In the homogeneous case, previously studied by Volosov, they obey a second-order differential equation; in the stratified case on which we focus they obey a nonlinear pseudodifferential equation, which reduces to the Peierls–Nabarro equation for sinusoidal topography. The known solutions to this equation provide examples of nonlinear periodic and solitary waves in continuously stratified fluid over topography.The influence of bottom topography on large-scale baroclinic instability is also examined using the averaged equations: they allow a straightforward extension of Eady's model which demonstrates the stabilizing effect of topography on baroclinic instability.


2019 ◽  
Vol 867 ◽  
pp. 146-194 ◽  
Author(s):  
G. L. Richard ◽  
A. Duran ◽  
B. Fabrèges

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale turbulence, including its anisotropic character, and is a source of vorticity of the average flow. The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive properties to the Green–Naghdi equations and is treated, both for the optimization of these properties and for the numerical resolution, with the same techniques which are used for the Green–Naghdi system. The model equations are solved with a discontinuous Galerkin discretization based on a decoupling between the hyperbolic and non-hydrostatic parts of the system. The predictions of the model are compared to experimental data in a wide range of physical conditions. Simulations were run in one-dimensional and two-dimensional cases, including run-up and run-down on beaches, non-trivial topographies, wave trains over a bar or propagation around an island or a reef. A very good agreement is reached in every cases, validating the predictive empirical laws for the parameters of the model. These comparisons confirm the efficiency of the present strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking even in a two-dimensional context. Compared with existing depth-averaged models, this approach is numerically robust and adds more physical effects without significant increase in numerical complexity.


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


Author(s):  
MOTOAKI KIMURA ◽  
MASAHIRO TAKEI ◽  
YOSHIFURU SAITO ◽  
KIYOSHI HORII

This paper describes the application of discrete wavelet transforms to the analysis of condensation jets in order to clarify the associated fluid and heat transfer phenomena. An experimentally-obtained, two-dimensional image of the condensation particle density around the jet was decomposed into 7 levels of resolution with their respective wavelengths. Based on the known physical characteristics of turbulent flow around the jet, levels 0 and 1 were shown to represent the large-scale components of the condensation particle density and the higher levels represent the small-scale components. From the wavelet-analyzed images, the width of the condensation zone was obtained and this compared well with the width inferred from temperature measurements. Thus, the method was verified and also provided data not available experimentally.


2017 ◽  
Vol 24 (s3) ◽  
pp. 4-11 ◽  
Author(s):  
Jie Zhao ◽  
Lingyun Bao ◽  
Guixuan Wang

Abstract In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.


Nanoscale ◽  
2014 ◽  
Vol 6 (17) ◽  
pp. 10118-10125 ◽  
Author(s):  
Chunmiao Zhang ◽  
Yaping Wu ◽  
Yinghui Zhou ◽  
Na Gao ◽  
Fei Guo ◽  
...  

Large-scale 2D Au lattices are achieved that display a unique wide energy gap and a Kagome-like transport route.


2012 ◽  
Vol 45 (2) ◽  
pp. 324-328 ◽  
Author(s):  
Jan Ilavsky

Nikais anIgor Pro-based package for correction, calibration and reduction of two-dimensional area-detector data into one-dimensional data (`lineouts'). It is free (although the user needs a paid license forIgor Pro), open source and highly flexible. While typically used for small-angle X-ray scattering (SAXS) data, it can also be used for grazing-incidence SAXS data, wide-angle diffraction data and even small-angle neutron scattering data. It has been widely available to the user community since about 2005, and it is currently used at the SAXS instruments of selected large-scale facilities as their main data reduction package. It is, however, also suitable for desktop instruments when the manufacturer's software is not available or appropriate. Since it is distributed as source code, it can be scrutinized, verified and modified by users to suit their needs.


2012 ◽  
Vol 9 (3) ◽  
pp. 2445-2479 ◽  
Author(s):  
G. P. Asner ◽  
J. K. Clark ◽  
J. Mascaro ◽  
G. A. Galindo García ◽  
K. D. Chadwick ◽  
...  

Abstract. High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.


Sign in / Sign up

Export Citation Format

Share Document