scholarly journals A closer look at the spur, blob, wiggle, and gaps in GD-1

2020 ◽  
Vol 494 (4) ◽  
pp. 5315-5332 ◽  
Author(s):  
T J L de Boer ◽  
D Erkal ◽  
M Gieles

ABSTRACT The GD-1 stream is one of the longest and coldest stellar streams discovered to date, and one of the best objects for constraining the dark matter properties of the Milky Way. Using data from Gaia DR2, we study the proper motions (PMs), distance, morphology, and density of the stream to uncover small-scale perturbations. The PM cleaned data show a clear distance gradient across the stream, ranging from 7 to 12 kpc. However, unlike earlier studies that found a continuous gradient, we uncover a distance minimum at φ1 ≈ −40 deg, after which the distance increases again. We can reliably trace the stream between −85 < φ1 <15 deg, showing an even further extent to GD-1 beyond the earlier extension of Price-Whelan and Bonaca. We constrain the stream track and density using a Boolean matched filter approach and find three large under densities and significant residuals in the stream track lining up with these gaps. The gaps are located at φ1 = −36, −20, and −3 deg, with the gap at −3 deg being surrounded by a clear sinusoidal wiggle. We argue that this wiggle is due to a perturbation since it has the wrong orientation to come from a progenitor. We compute a total initial stellar mass of the stream segment of 1.58 ± 0.07 × 104 M⊙. With the extended view of the spur in this work, we argue that the spur may be unrelated to the adjacent gap in the stream. Finally, we show that an interaction with the Sagittarius dwarf can create features similar to the spur.

2018 ◽  
Vol 614 ◽  
pp. A82 ◽  
Author(s):  
P. Tarrío ◽  
J.-B. Melin ◽  
M. Arnaud

The combination of X-ray and Sunyaev–Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray–SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray–SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.


2019 ◽  
Vol 488 (3) ◽  
pp. 3474-3481
Author(s):  
A T Bajkova ◽  
V V Bobylev

Abstract Passing through the Galactic disc, a massive object such as a globular cluster, can trigger star formation process leading to the birth of open clusters. Here, we analyse such possible evolutionary relationship between globular and open clusters. To search for the closest rapprochement between objects we computed backwards the orbits of 150 Galactic globular and 232 open clusters (younger than 100 Myr) with proper motions, derived from the Gaia DR2 catalogue. The orbits were computed using the recently modified three-component (disc, bulge, and halo) axisymmetric Navarro–Frenk–White potential, which was complemented by non-axisymmetric bar and spiral density wave potentials. We obtained a new estimate for the frequency of impacts of globular clusters about the Galactic disc, which is equal to four events for 1 Myr. In the framework of the considered scenario, we highlight the following nine pairs of globular and open clusters, with rapprochement within 1 kpc at the time of the intersection the Galactic disc by a globular cluster for the latest 100 Myr: NGC 104 – Turner 3, NGC 104 – NGC 6396, NGC 104 – Ruprecht 127, NGC 5139 – Trumpler 17, NGC 5139 – NGC 6520, NGC 6341 – NGC 6613, NGC 6838 – NGC 6520, NGC 7078 – NGC 7063, NGC 6760 – Ruprecht 127.


Author(s):  
Iván H Bustos Fierro ◽  
J H Calderón

Abstract In this work we present a method to identify possible members of globular clusters using data from Gaia DR2. The method consists of two stages: the first one based on a clustering algorithm, and the second one based on the analysis of the projected spatial distribution of stars with different proper motions. In order to confirm that the clusters members extracted by the method correspond to actual globular clusters, the spatial distribution, the vector point diagram of the proper motions and the colour-magnitude diagrams are analysed. We apply the developed method to eight clusters: NGC 1261, NGC 3201, NGC 6139, NGC 6205, NGC 6362, NGC 6397, NGC 6712 and Palomar 13; we show the number of members extracted, the mean proper motions derived from them and finally we compare our results with other authors. In order to analyse the efficiency of the extraction method we perform an estimation of the completeness and the degree of contamination of the extracted members.


NASPA Journal ◽  
1998 ◽  
Vol 35 (4) ◽  
Author(s):  
Jackie Clark ◽  
Joan Hirt

The creation of small communities has been proposed as a way of enhancing the educational experience of students at large institutions. Using data from a survey of students living in large and small residences at a public research university, this study does not support the common assumption that small-scale social environments are more conducive to positive community life than large-scale social environments.


2016 ◽  
Vol 283 (1823) ◽  
pp. 20152404 ◽  
Author(s):  
Jorge Velázquez ◽  
Robert B. Allen ◽  
David A. Coomes ◽  
Markus P. Eichhorn

Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts.


2018 ◽  
Vol 619 ◽  
pp. A78 ◽  
Author(s):  
D. J. Lennon ◽  
C. J. Evans ◽  
R. P. van der Marel ◽  
J. Anderson ◽  
I. Platais ◽  
...  

A previous spectroscopic study identified the very massive O2 III star VFTS 16 in the Tarantula Nebula as a runaway star based on its peculiar line-of-sight velocity. We use the Gaia DR2 catalog to measure the relative proper motion of VFTS 16 and nearby bright stars to test if this star might have been ejected from the central cluster, R136, via dynamical ejection. We find that the position angle and magnitude of the relative proper motion (0.338±0.046 mas yr−1, or approximately 80±11 km s−1) of VFTS 16 are consistent with ejection from R136 approximately 1.5±0.2 Myr ago, very soon after the cluster was formed. There is some tension with the presumed age of VFTS 16 that, from published stellar parameters, cannot be greater than 0.9+0.3−0.2 Myr. Older ages for this star would appear to be prohibited due to the absence of He I lines in its optical spectrum, since this sets a firm lower limit on its effective temperature. The dynamical constraints may imply an unusual evolutionary history for this object, perhaps indicating it is a merger product. Gaia DR2 also confirms that another very massive star in the Tarantula Nebula, VFTS 72 (alias BI 253; O2 III-V(n)((f*)), is also a runaway on the basis of its proper motion as measured by Gaia. While its tangential proper motion (0.392±0.062 mas yr−1 or 93±15 km s−1) would be consistent with dynamical ejection from R136 approximately 1 Myr ago, its position angle is discrepant with this direction at the 2σ level. From their Gaia DR2 proper motions we conclude that the two ∼100 M⊙ O2 stars, VFTS 16 and VFTS 72, are fast runaway stars, with space velocities of around 100 km s−1 relative to R136 and the local massive star population. The dynamics of VFTS 16 are consistent with it having been ejected from R136, and this star therefore sets a robust lower limit on the age of the central cluster of ∼1.3 Myr.


2018 ◽  
Vol 619 ◽  
pp. A103 ◽  
Author(s):  
T. K. Fritz ◽  
G. Battaglia ◽  
M. S. Pawlowski ◽  
N. Kallivayalil ◽  
R. van der Marel ◽  
...  

A proper understanding of the Milky Way (MW) dwarf galaxies in a cosmological context requires knowledge of their 3D velocities and orbits. However, proper motion (PM) measurements have generally been of limited accuracy and are available only for more massive dwarfs. We therefore present a new study of the kinematics of the MW dwarf galaxies. We use the Gaia DR2 for those dwarfs that have been spectroscopically observed in the literature. We derive systemic PMs for 39 galaxies and galaxy candidates out to 420 kpc, and generally find good consistency for the subset with measurements available from other studies. We derive the implied Galactocentric velocities, and calculate orbits in canonical MW halo potentials of low (0.8 × 1012 M⊙) and high mass (1.6 × 1012 M⊙). Comparison of the distributions of orbital apocenters and 3D velocities to the halo virial radius and escape velocity, respectively, suggests that the satellite kinematics are best explained in the high-mass halo. Tuc III, Crater II, and additional candidates have orbital pericenters small enough to imply significant tidal influences. Relevant to the missing satellite problem, the fact that fewer galaxies are observed to be near apocenter than near pericenter implies that there must be a population of distant dwarf galaxies yet to be discovered. Of the 39 dwarfs: 12 have orbital poles that do not align with the MW plane of satellites (given reasonable assumptions about its intrinsic thickness); 10 have insufficient PM accuracy to establish whether they align; and 17 satellites align, of which 11 are co-orbiting and (somewhat surprisingly, in view of prior knowledge) 6 are counter-orbiting. Group infall might have contributed to this, but no definitive association is found for the members of the Crater-Leo group.


2007 ◽  
Vol 7 (3) ◽  
pp. 6603-6629 ◽  
Author(s):  
I. Pisso ◽  
B. Legras

Abstract. Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.


2017 ◽  
Vol 2 (1) ◽  
pp. 112-116
Author(s):  
Akhsani Taqwiym ◽  
Novan Wijaya

Internet technology is currently growing, as well as the flow of communication in the delivery of employment information provided or required by various parties, including government and private. Before the existence of information technology, job vacancy still use conventional method that is by installing announcement on office walls and print media. Along with the development of information technology, job apangan provided at this time, informed very quickly and have many advantages such as job seekers only open information about job vacancy through websites that have been available. But in the delivery of job vacancy has a constraint that there are parties who have bad intentions by spreading vacancies that are not actually there. So it hurts job seekers, whether material or time. Currently, job seekers do not need to come directly to companies that need jobs but can directly send the application via E-mail. To reduce the act of fraud committed by irresponsible person then needed a system that help job seekers get good information and correct. Therefore, the alternative of the solution is to use a web-based information technology system so that job seekers can directly see and communicate with companies that open job vacancies. In the design of a software system contains job vacancy information and job seeker data processing. The designed software is still a prototype, using Data Flow Diagrams (DFD) and Entity Relationship Diagram (ERD).


2005 ◽  
Vol 2 ◽  
pp. 293-299 ◽  
Author(s):  
G. Calenda ◽  
E. Gorgucci ◽  
F. Napolitano ◽  
A. Novella ◽  
E. Volpi

Abstract. A scale-invariance analysis of space and time rainfall events monitored by meteorological radar over the area of Rome (Italy) is proposed. The study of the scale-invariance properties of intense precipitation storms, particularly important in flood forecast and risk mitigation, allows to transfer rainfall information from the large scale predictive meteorological models to the small scale hydrological rainfall-runoff models. Precipitation events are monitored using data collected by the polarimetric Doppler radar Polar 55C (ISAC-CNR), located 15 km Southeast from downtown. The meteorological radar provides the estimates of rainfall intensity over an area of about 10 000 km2 at a resolution of 2×2 km2 in space and 5 min in time. Many precipitation events have been observed from autumn 2001 up to now. A scale-invariance analysis is performed on some of these events with the aim at exploring the multifractal properties and at understanding their dependence on the meteorological large-scale conditions.


Sign in / Sign up

Export Citation Format

Share Document