scholarly journals The impact of progenitor asymmetries on the neutrino-driven convection in core-collapse supernovae

2020 ◽  
Vol 494 (4) ◽  
pp. 5360-5373 ◽  
Author(s):  
Rémi Kazeroni ◽  
Ernazar Abdikamalov

ABSTRACT The explosion of massive stars in core-collapse supernovae may be aided by the convective instabilities that develop in their innermost nuclear burning shells. The resulting fluctuations support the explosion by generating additional turbulence behind the supernova shock. It was suggested that the buoyant density perturbations arising from the interaction of the pre-collapse asymmetries with the shock may be the primary contributor to the enhancement of the neutrino-driven turbulent convection in the post-shock region. Employing three-dimensional numerical simulations of a toy model, we investigate the impact of such density perturbations on the post-shock turbulence. We consider a wide range of perturbation parameters. The spatial scale and the amplitude of the perturbations are found to be of comparable importance. The turbulence is particularly enhanced when the perturbation frequency is close to that of the convective turnovers in the gain region. Our analysis confirms that the buoyant density perturbations is indeed the main source of the additional turbulence in the gain region, validating the previous order-of-magnitude estimates.

2017 ◽  
Vol 824 ◽  
pp. 866-885 ◽  
Author(s):  
Ali Mazloomi Moqaddam ◽  
Shyam S. Chikatamarla ◽  
Iliya V. Karlin

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


1996 ◽  
Vol 74 (1-2) ◽  
pp. 4-9
Author(s):  
M. R. M. Witwit

The energy levels of a three-dimensional system are calculated for the rational potentials,[Formula: see text]using the inner-product technique over a wide range of values of the perturbation parameters (λ, g) and for various eigenstates. The numerical results for some special cases agree with those of previous workers where available.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 14-18
Author(s):  
A. Strugarek ◽  
A. S. Brun ◽  
S. P. Matt ◽  
V. Reville

AbstractThe possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.


2020 ◽  
Vol 6 (10) ◽  
pp. eaaw5111 ◽  
Author(s):  
Bugra Ayan ◽  
Dong Nyoung Heo ◽  
Zhifeng Zhang ◽  
Madhuri Dey ◽  
Adomas Povilianskas ◽  
...  

Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.


2020 ◽  
Vol 492 (4) ◽  
pp. 5764-5779 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behaviour emerges. We find that the vigour of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS − heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of νμ, ντ, $\bar{\nu }_{\mu }$, and $\bar{\nu }_{\tau }$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.


Author(s):  
B. Müller

AbstractModels of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the ‘perturbations-aided neutrino-driven mechanism,’ whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.


2011 ◽  
Vol 7 (S281) ◽  
pp. 132-135
Author(s):  
Rosanne Di Stefano

Abstract“What do the progenitors of Type Ia supernovae (SNe Ia) look like? How can we hope to find them?” We focus on the epoch during which mass is incident on a white dwarf (WD) at high rates (> 10−7M⊙ yr−1). Such epochs are expected in single-degenerate (SD) progenitors, double-degenerate (DD) progenitors, and in a wide range of binaries with WDs that will not achieve the Chandrasekhar mass, MCh. High-rate accretion onto a WD produces high luminosities through accretion alone; in addition, most calculations show that quasisteady or episodic nuclear burning can occur, increasing the luminosity by more than an order of magnitude. If the photosphere is not much larger than the WD, the emission will have values of kT in the range of tens of eV, and the source will appear as a luminous supersoft x-ray source (SSS). Studies of local SSSs that are good candidates for nuclear-burning WDs (NBWDs) suggest that many have low duty cycles of SSS activity. This is consistent with the fact that binary WD models predict about 100 times as many SSSs in external galaxies of all types as are actually detected. Interstellar absorption does not appear to be the problem. Instead, it is likely that the ~1037−1038 erg s−1 emitted by NBWDs emerges in other wavebands. The challenge we face is to search for highly luminous systems within the Milky Way and nearby galaxies that have unusual properties consistent with NBWDs, and inconsistent with other physical models. Model tests can then be conducted for individual candidates, allowing us to identify large numbers of progenitors years before explosion.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8327
Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Francesco Bertini ◽  
Simone Rosa Taddei ◽  
Ennio Spano ◽  
...  

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.


2020 ◽  
Vol 495 (4) ◽  
pp. 3751-3762 ◽  
Author(s):  
Conrad Chan ◽  
Bernhard Müller ◽  
Alexander Heger

ABSTRACT Fallback in core-collapse supernovae plays a crucial role in determining the properties of the compact remnants and of the ejecta composition. We perform three-dimensional simulations of mixing and fallback for selected non-rotating supernova models to study how explosion energy and asymmetries correlate with the remnant mass, remnant kick, and remnant spin. We find that the strongest kick and spin are imparted by partial fallback in an asymmetric explosion. Black hole (BH) kicks of several hundred $\mathrm{km}\, \mathrm{s}^{-1}$ and spin parameters of $\mathord {\sim }0.25$ can be obtained in this scenario. If the initial explosion energy barely exceeds the envelope binding energy, stronger fallback results, and the remnant kick and spin remain small. If the explosion energy is high with respect to the envelope binding energy, there is little fallback with a small effect on the remnant kick, but the spin-up by fallback can be substantial. For a non-rotating $12\, \mathrm{M}_\odot$ progenitor, we find that the neutron star is spun up to millisecond periods. The high specific angular momentum of the fallback material can also lead to disc formation around BHs. Fallback may thus be a pathway towards millisecond-magnetar or collapsar-type engines for hypernovae and gamma-ray bursts that does not require rapid progenitor rotation. Within our small set of simulations, none reproduced the peculiar layered fallback necessary to explain the metal-rich iron-poor composition of many carbon-enhanced metal-poor (CEMP) stars. Models with different explosion energy and different realizations of asymmetries may, however, be compatible with CEMP abundance patterns.


Sign in / Sign up

Export Citation Format

Share Document