scholarly journals Late time approaches to the Hubble tension deforming H(z), worsen the growth tension

Author(s):  
George Alestas ◽  
Leandros Perivolaropoulos

Abstract Many late time approaches for the solution of the Hubble tension use late time smooth deformations of the Hubble expansion rate H(z) of the Planck18/ΛCDM best fit to match the locally measured value of H0 while effectively keeping the comoving distance to the last scattering surface and Ω0mh2 fixed to maintain consistency with Planck CMB measurements. A well known problem of these approaches is that they worsen the fit to low z distance probes. Here we show that another problem of these approaches is that they worsen the level of the Ω0m − σ8 growth tension. We use the generic class of CPL parametrizations corresponding to evolving dark energy equation of state parameter $w(z)=w_0+w_1\frac{z}{1+z}$ with local measurements H0 prior and identify the pairs (w0, w1) that satisfy this condition. This is a generic class of smooth deformations of H(z) that are designed to address the Hubble tension. We show that for these models the growth tension between dynamical probe data and CMB constraints is worse than the corresponding tension of the standard Planck18/ΛCDM model. We justify this feature using a full numerical solution of the growth equation and fit to the data, as well as by using an approximate analytic approach. The problem does not affect recent proposed solutions of the Hubble crisis involving a SnIa intrinsic luminosity transition at zt ≃ 0.01.

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 300
Author(s):  
Anastasios Theodoropoulos ◽  
Leandros Perivolaropoulos

We present a detailed and pedagogical analysis of recent cosmological data, including CMB, BAO, SnIa and the recent local measurement of H0. We thus obtain constraints on the parameters of these standard dark energy parameterizations, including ΛCDM, and H(z) deformation models such as wCDM (constant equation of state w of dark energy), and the CPL model (corresponding to the evolving dark energy equation-of-state parameter w(z)=w0+waz1+z). The fitted parameters include the dark matter density Ω0m, the SnIa absolute magnitude M, the Hubble constant H0 and the dark energy parameters (e.g., w for wCDM). All models considered lead to a best-fit value of M that is inconsistent with the locally determined value obtained by Cepheid calibrators (M tension). We then use the best-fit dark energy parameters to reconstruct the quintessence Lagrangian that would be able to reproduce these best-fit parameterizations. Due to the derived late phantom behavior of the best-fit dark energy equation-of-state parameter w(z), the reconstructed quintessence models have a negative kinetic term and are therefore plagued with instabilities.


2018 ◽  
Vol 33 (38) ◽  
pp. 1850224 ◽  
Author(s):  
S. A. A. Terohid ◽  
H. Hossienkhani ◽  
H. Yousefi

The 194 supernova Ia data and the effect of anisotropy are combined to reconstruct the dark energy equation of state parameter [Formula: see text] and the deceleration parameter [Formula: see text]. Using the supernovae type Ia data, we evaluate the anisotropy effects (although low) on dark energy parametrization [Formula: see text] and we compare the results with [Formula: see text]CDM model. Present supernova observations are analyzed using a standard [Formula: see text] method and the minimal [Formula: see text] values obtained for each model are compared. We confirm the difficulty of discriminating between these models using present SNIa data only. By means of the maximum likelihood method, we find that the best-fit dynamical [Formula: see text] and [Formula: see text] parameters [Formula: see text] are obtained from the SNIa dataset. In particular, we find the best-fit values of [Formula: see text]CDM model ([Formula: see text] = 0.013, [Formula: see text] = 197.559) for [Formula: see text] = 0.3 and ([Formula: see text] = 0.02, [Formula: see text] = 196.983) for [Formula: see text] = 0.27. Finally, we found that the presence of anisotropy is confirmed in mentioned models via SNIa dataset.


2015 ◽  
Vol 93 (10) ◽  
pp. 1100-1105 ◽  
Author(s):  
Shri Ram ◽  
S. Chandel ◽  
M.K. Verma

The hypersurface homogeneous cosmological models are investigated in the presence of an anisotropic fluid in the framework of Lyra geometry. Exact solutions of field equations are obtained by applying a special law of variation for mean Hubble parameter that gives a negative constant value of the deceleration parameter. These solutions correspond to anisotropic accelerated expanding cosmological models that isotropize for late time even in the presence of anisotropic fluid. The anisotropy of the fluid also isotropizes at late time. Some physical and kinematical properties of the model are also discussed.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Nasim Saba ◽  
Mehrdad Farhoudi

By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.


2016 ◽  
Vol 94 (7) ◽  
pp. 659-670 ◽  
Author(s):  
B. Pourhassan

The universe evolution from inflation to late-time acceleration is investigated in a unified way, using a two-component fluid constituted from extended Chaplygin gas alongside a phantom scalar field. We extract solutions for the various cosmological eras, focusing on the behavior of the scale factor, the various density parameters and the equation-of-state parameter. Furthermore, we extract and discuss bouncing solutions. Finally, we examine the perturbations of the model, ensuring their stability and extracting the predictions for the tensor-to-scalar ratio.


Author(s):  
HAYATO MOTOHASHI ◽  
ALEXEI A. STAROBINSKY ◽  
JUN'ICHI YOKOYAMA

f(R) gravity provides viable cosmology alternative to the ΛCDM model. We discuss the effect of massive neutrinos on matter power spectrum in this theory, to show that the anomalous growth of density fluctuations on small scales due to the scalaron force can be compensated by free streaming of neutrinos. As a result, models which predict observable deviation of the equation-of-state parameter w DE from w DE = -1 may be reconciled with observations of matter clustering if the total neutrino mass is O(0.5 eV ).


2019 ◽  
Vol 34 (09) ◽  
pp. 1950069
Author(s):  
A. Savaş Arapoğlu ◽  
A. Emrah Yükselci

Dynamical system analysis of a universe model which contains matter, radiation and quintessence with exponential potential, [Formula: see text], is studied in the light of recent observations and the tensions between different datasets. The three-dimensional phase space is constructed by the energy density parameters and all the critical points of the model with their physical meanings are investigated. This approach provides an easy way of comparing the model directly with the observations. We consider a solution that is compatible with observations and is continuous in the phase space in both directions of time, past and future. Although in many studies of late-time acceleration, the radiation is neglected, here we consider all components together and this makes the calculated effective equation of state parameter more realistic. Additionally, a relation between potential parameter, [Formula: see text], and the value of quintessence equation of state parameter, [Formula: see text], today is found by using numerical analysis. We conclude that [Formula: see text] has to be small in order to explain the current accelerated phase of the universe and this result can be seen directly from the relation we obtain. Finally, we compare the usual dynamical system approach with the approach that we follow in this paper.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750136 ◽  
Author(s):  
Abdulla Al Mamon

This work is the reconstruction of the interaction rate of holographic dark energy whose infrared cut-off scale is set by the Hubble length. We have reconstructed the interaction rate between dark matter and the holographic dark energy for a specific parameterization of the effective equation-of-state parameter. We have obtained observational constraints on the model parameters using the latest type Ia supernova (SNIa), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) radiation datasets. We have found that for the present model, the interaction rate increases with expansion and remains positive throughout the evolution. For a comprehensive analysis, we have also compared the reconstructed results of the interaction rate with other well-known holographic dark energy models. The nature of the deceleration parameter, the statefinder parameters and the dark energy equation-of-state parameter have also been studied for the present model. It has been found that the deceleration parameter favors the past decelerated and recent accelerated expansion phase of the universe. It has also been found that the dark energy equation-of-state parameter shows a phantom nature at the present epoch.


Sign in / Sign up

Export Citation Format

Share Document