scholarly journals A precise asteroseismic age and metallicity for HD 139614: a pre-main-sequence star with a protoplanetary disc in Upper Centaurus–Lupus

2021 ◽  
Vol 502 (2) ◽  
pp. 1633-1646
Author(s):  
Simon J Murphy ◽  
Meridith Joyce ◽  
Timothy R Bedding ◽  
Timothy R White ◽  
Mihkel Kama

ABSTRACT HD 139614 is known to be a ∼14-Myr-old, possibly pre-main-sequence star in the Sco-Cen OB association in the Upper Centaurus-Lupus subgroup, with a slightly warped circumstellar disc containing ring structures hinting at one or more planets. The star’s chemical abundance pattern is metal-deficient except for volatile elements, which places it in the λ Boo class and suggests it has recently accreted gas-rich but dust-poor material. We identify seven dipole and four radial pulsation modes among its δ Sct pulsations using the TESS light curve and an échelle diagram. Precision modelling with the mesa stellar evolution and gyre stellar oscillation programs confirms it is on the pre-main sequence. Asteroseismic, grid-based modelling suggests an age of 10.75 ± 0.77 Myr, a mass of 1.52 ± 0.02 M ⊙, and a global metal abundance of Z = 0.0100 ± 0.0010. This represents the first asteroseismic determination of the bulk metallicity of a λ Boo star. The precise age and metallicity offer a benchmark for age estimates in Upper Centaurus–Lupus, and for understanding disc retention and planet formation around intermediate-mass stars.

2012 ◽  
Vol 8 (S289) ◽  
pp. 398-401
Author(s):  
Jun Ma

AbstractWe determined the age of the M31 globular cluster B379 using isochrones of the Padova stellar evolutionary models. At the same time, the cluster's metal abundance, its distance modulus, and reddening value were also obtained. The results obtained in this paper are consistent with previous determinations, including the age. Brown et al. constrained the age of B379 by comparing its color–magnitude diagram with isochrones of the 2006 VandenBerg models. Therefore, this paper confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones. The results of B379 obtained in this paper are: metallicity [M/H] = log(Z/Z⊙) = −0.325 dex, age τ = 11.0 ± 1.5 Gyr, reddening E(B − V) = 0.08 mag, and distance modulus (m − M)0 = 24.44 ± 0.10 mag. Using the metallicity, the reddening value and the distance modulus obtained in this paper, we constrained the age of B379 by comparing its multicolor photometry with theoretical stellar population synthesis models. The age of B379 obtained is 10.6−0.76+0.92 Gyr, which is in very good agreement with the determination from main-sequence photometry.


1993 ◽  
Vol 137 ◽  
pp. 347-360
Author(s):  
Johannes Andersen

AbstractThe current status of empirical data on stellar masses and radii of sufficient accuracy to give constraints on stellar models is reviewed. Results from the best-studied eclipsing binaries can already trace the main-sequence evolution of 1-10 M⊙ stars in considerable detail and will be even more useful when supplemented by chemical abundance data.Taking the deceptively simple question of the observed width of the main sequence as an example, it is shown how careful attention to the details of the data is required to reach robust conclusions about such features of modern stellar evolution models as opacity tables or convective overshooting. Only detailed modelling of specific systems with known masses, radii, and metal abundance constrain the theory strongly enough that a truly critical test is achieved. The same is true when using tidal interactions in binaries (apsidal motion, rotational synchronization, and orbital circularization) as another probe into stellar interiors.


Author(s):  
Minori Shikauchi ◽  
Jun Kumamoto ◽  
Ataru Tanikawa ◽  
Michiko S Fujii

Abstract Black hole–main sequence star (BH–MS) binaries are one of the targets of future data releases of the astrometric satellite Gaia. They are supposed to be formed in two main sites: a galactic field and star clusters. However, previous work has never predicted the number of BH–MS binaries originating in the latter sites. In this paper we estimate the number of BH–MS binaries formed in open clusters and detectable with Gaia based on the results of N-body simulations. By considering interstellar extinction in the Milky Way and observational constraints, we predict that ∼10 BH–MS binaries are observable. We also find that chemical abundance patterns of companion MSs will help us to identify the origin of the binaries as star clusters. Such MSs are not polluted by outflows of the BH progenitors, such as stellar winds and supernova ejecta. Chemical anomalies might be a good test to confirm the origin of binaries with relatively less massive MSs (≲5 M⊙), short orbital periods (∼1.5 yr), and higher eccentricities (e ≳0.1).


2020 ◽  
Vol 633 ◽  
pp. L5 ◽  
Author(s):  
A. Irrgang ◽  
S. Geier ◽  
S. Kreuzer ◽  
I. Pelisoli ◽  
U. Heber

Context. The recently claimed discovery of a massive (MBH = 68−13+11 M⊙) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O. Moreover, the elements Mg, Al, Si, S, Ar, and Fe are systematically underabundant when compared to normal main-sequence B-type stars. We suggest that LS V+22 25 is a stripped helium star and discuss two possible formation scenarios. Combining our photometric and spectroscopic results with the Gaia parallax, we infer a stellar mass of 1.1 ± 0.5 M⊙. Based on the binary system’s mass function, this yields a minimum mass of 2–3 M⊙ for the compact companion, which implies that it may not necessarily be a black hole but a massive neutron- or main sequence star. Conclusions. The star LS V+22 25 has become famous for possibly having a very massive black hole companion. However, a closer look reveals that the star itself is a very intriguing object. Further investigations are necessary for complete characterization of this object.


2019 ◽  
Vol 871 (2) ◽  
pp. 146 ◽  
Author(s):  
Anna Frebel ◽  
Alexander P. Ji ◽  
Rana Ezzeddine ◽  
Terese T. Hansen ◽  
Anirudh Chiti ◽  
...  

2015 ◽  
Vol 11 (S317) ◽  
pp. 45-50 ◽  
Author(s):  
Wako Aoki ◽  
Timothy C. Beers ◽  
Takuma Suda ◽  
Satoshi Honda ◽  
Young Sun Lee

AbstractLarge surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <−2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <−3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <−2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500–5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.


2019 ◽  
Vol 15 (S354) ◽  
pp. 189-194
Author(s):  
J. B. Climent ◽  
J. C. Guirado ◽  
R. Azulay ◽  
J. M. Marcaide

AbstractWe report the results of three VLBI observations of the pre-main-sequence star AB Doradus A at 8.4 GHz. With almost three years between consecutive observations, we found a complex structure at the expected position of this star for all epochs. Maps at epochs 2007 and 2010 show a double core-halo morphology while the 2013 map reveals three emission peaks with separations between 5 and 18 stellar radii. Furthermore, all maps show a clear variation of the source structure within the observing time. We consider a number of hypothesis in order to explain such observations, mainly: magnetic reconnection in loops on the polar cap, a more general loop scenario and a close companion to AB Dor A.


2013 ◽  
Vol 768 (1) ◽  
pp. 74 ◽  
Author(s):  
L. J. Tacconi ◽  
R. Neri ◽  
R. Genzel ◽  
F. Combes ◽  
A. Bolatto ◽  
...  

2009 ◽  
Vol 5 (H15) ◽  
pp. 815-815
Author(s):  
Antonio S. Hales ◽  
Michael J. Barlow ◽  
Janet E. Drew ◽  
Yvonne C. Unruh ◽  
Robert Greimel ◽  
...  

AbstractThe Isaac Newton Photometric H-Alpha Survey (IPHAS) provides (r′-Hα)-(r′-i′) colors, which can be used to select AV0-5 Main Sequence star candidates (age~20-200 Myr). By combining a sample of 23050 IPHAS-selected A-type stars with 2MASS, GLIMPSE and MIPSGAL photometry we searched for mid-infrared excesses attributable to dusty circumstellar disks. Positional cross-correlation yielded a sample of 2692 A-type stars, of which 0.6% were found to have 8-μm excesses above the expected photospheric values. The low fraction of main sequence stars with mid-IR excesses found in this work indicates that dust disks in the terrestrial planet zone of Main Sequence intermediate mass stars are rare. Dissipation mechanisms such as photo-evaporation, grain growth, collisional grinding or planet formation could possibly explain the depletion of dust detected in the inner regions of these disks.


2018 ◽  
Vol 18 (1) ◽  
pp. 79-89 ◽  
Author(s):  
S. Y. Moorman ◽  
B. L. Quarles ◽  
Zh. Wang ◽  
M. Cuntz

AbstractWe continue to investigate the binary system Kepler-16, consisting of a K-type main-sequence star, a red dwarf and a circumbinary Saturnian planet. As part of our study, we describe the system's habitable zone based on different climate models. We also report on stability investigations for possible Earth-mass Trojans while expanding a previous study by B. L. Quarles and collaborators given in 2012. For the climate models, we carefully consider the relevance of the system's parameters. Furthermore, we pursue new stability simulations for the Earth-mass objects starting along the orbit of Kepler-16b. The eccentricity distribution as obtained prefers values close to circular, whereas the inclination distribution remains flat. The stable solutions are distributed near the co-orbital Lagrangian points, thus enhancing the plausibility that Earth-mass Trojans might be able to exist in the Kepler-16(AB) system.


Sign in / Sign up

Export Citation Format

Share Document