scholarly journals The Peculiar Behavior of Burst Oscillations in the Accreting Millisecond X-ray Pulsar XTE J1814–338

Author(s):  
Yuri Cavecchi ◽  
Alessandro Patruno

Abstract Accreting millisecond X-ray pulsars (AMXPs) show burst oscillations during thermonuclear explosions of the accreted plasma which are markedly different from those observed in non-pulsating low mass X-ray binaries. The AMXP XTE J1814–338 is known for having burst oscillations that are phase locked (constant phase difference) and coincident with the accretion powered pulsations during all its thermonuclear bursts but the last one. In this work we use a coherent timing analysis to investigate this phenomenon in more detail and with higher time resolution than was done in the past. We confirm that the burst oscillation phases are, on average, phase locked to the accretion powered pulsations. However, they also display moderate (≲ 0.1 cycles) drifts during each individual burst, showing a repeating pattern that is consistently observed according to the thermonuclear burst phase (rise, peak, tail). Despite the existence of these drifting patterns, the burst oscillation phases somehow are able to average out at almost the exact position of the accretion powered pulsations. We provide a kinematic description of the phenomenon and review the existing models in the literature. The phenomenon remains without a clear explanation, but we can place important constraints on the thermonuclear burst mechanism. In particular, the observations imply that the ignition point of the thermonuclear burst occurs close to the foot of the accretion column. We speculate that the burning fluid expands in a backward tilted accretion column trapped by the magnetic field, while at the same time the burning flame covers the surface.

2020 ◽  
Vol 493 (3) ◽  
pp. 3866-3878 ◽  
Author(s):  
N Singh ◽  
B Haskell ◽  
D Mukherjee ◽  
T Bulik

ABSTRACT Accreting neutron stars (NSs) are one of the main targets for continuous gravitational wave searches, as asymmetric accretion may lead to quadrupolar deformations, or ‘mountains’, on the crust of the star, which source gravitational wave (GW) emission at twice the rotation frequency. The GW torque may also impact on the spin evolution of the star, possibly dictating the currently observed spin periods of NSs in low-mass X-ray binaries and leading to the increased spin-down rate observed during accretion in PSR J1023+0038. Previous studies have shown that deformed reaction layers in the crust of the NS lead to thermal and compositional gradients that can lead to GW emission. However, there are no realistic constraints on the level of asymmetry that is expected. In this paper, we consider a natural source of asymmetry, namely the magnetic field, and calculate the density and pressure perturbations that are expected in the crust of accreting NSs. In general, we find that only the outermost reaction layers of the NS are strongly perturbed. The mass quadrupole that we estimate is generally small and cannot explain the increase of spin-down rate of PSR J1023+0038. However, if strong shallow heating sources are present at low densities in the crust, as cooling observations suggest, these layers will be strongly perturbed and the resulting quadrupole could explain the observed spin-down of PSR J1023+0038, and lead to observable GW signals from systems with higher accretion rates.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


Author(s):  
Nicolas Scepi ◽  
Mitchell C Begelman ◽  
Jason Dexter

Abstract Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) are compact binaries showing variability on time scales from years to less than seconds. Here, we focus on explaining part of the rapid fluctuations in DNe, following the framework of recent studies on the monthly eruptions of DNe that use a hybrid disk composed of an outer standard disk and an inner magnetized disk. We show that the ionization instability, that is responsible for the monthly eruptions of DNe, is also able to operate in the inner magnetized disk. Given the low density and the fast accretion time scale of the inner magnetized disk, the ionization instability generates small, rapid heating and cooling fronts propagating back and forth in the inner disk. This leads to quasi-periodic oscillations (QPOs) with a period of the order of 1000 s. A strong prediction of our model is that these QPOs can only develop in quiescence or at the beginning/end of an outburst. We propose that these rapid fluctuations might explain a subclass of already observed QPOs in DNe as well as a, still to observe, subclass of QPOs in LMXBs. We also extrapolate to the possibility that the radiation pressure instability might be related to Type B QPOs in LMXBs.


2021 ◽  
Vol 502 (2) ◽  
pp. 1856-1863
Author(s):  
G C Mancuso ◽  
D Altamirano ◽  
M Méndez ◽  
M Lyu ◽  
J A Combi

ABSTRACT We detect millihertz quasi-periodic oscillations (mHz QPOs) using the Rossi X-ray Time Explorer (RXTE) from the atoll neutron-star (NS) low-mass X-ray binaries 4U 1608–52 and Aql X–1. From the analysis of all RXTE observations of 4U 1608–52 and Aql X–1, we find mHz QPOs with a significance level >3σ in 49 and 47 observations, respectively. The QPO frequency is constrained between ∼4.2 and 13.4 mHz. These types of mHz QPOs have been interpreted as being the result of marginally stable nuclear burning of He on the NS surface. We also report the discovery of a downward frequency drift in three observations of 4U 1608–52, making it the third source that shows this behaviour. We only find strong evidence of frequency drift in one occasion in Aql X–1, probably because the observations were too short to measure a significant drift. Finally, the mHz QPOs are mainly detected when both sources are in the soft or intermediate states; the cases that show frequency drift only occur when the sources are in intermediate states. Our results are consistent with the phenomenology observed for the NS systems 4U 1636–53 and EXO 0748–676, suggesting that all four sources can reach the conditions for marginally stable burning of He on the NS surface. These conditions depend on the source state in the same manner in all four systems.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Vojtěch Šimon

Abstract 4U 1608–52 is a soft X-ray transient. The analysis presented here of a particular part of its X-ray activity uses observations of RXTE/ASM and Swift/BAT. We show a time segment (MJD 54262–MJD 55090) (828 d) in which 4U 1608–52 behaved as a quasi-persistent X-ray source with a series of bumps, with a complicated relation between the evolution of fluxes in the soft (1.5–12 keV) and the hard (15–50 keV) X-ray regions. We ascribe these bumps to a series of propagations of heating and cooling fronts over the inner disk region without any transitions to the true quiescence. 4U 1608–52 oscillated around the boundary between the dominance of the Comptonized component and the dominance of the multicolor accretion disk in its luminosity. Only some of the bumps in this series were accompanied by a transition from the hard to the soft state; if it occurred, it displayed a strong hysteresis effect. The hard-band emission with the dominant Comptonized component was present for most of this active state and showed a cycle of about 40 d. We argue that the cyclic variations of flux come from the inner disk region, not, e.g., from a jet. We also discuss the observed behavior of 4U 1608–52 in the context of other quasi-persistent low-mass X-ray binaries.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2011 ◽  
Vol 7 (S282) ◽  
pp. 65-66
Author(s):  
Augustin Skopal

AbstractThe spectrum of strongly interacting binaries, as for example, high and low mass X-ray binaries, symbiotic (X-ray) binaries and/or classical and recurrent novae, consists of more components of radiation contributing from hard X-rays to radio wavelengths. To understand the basic physical processes responsible for the observed spectrum we have to disentangle the composite spectrum into its individual components, i.e. to determine their physical parameters. In this short contribution I demonstrate the method of modeling the multiwavelength SED on the example of the extragalactic super-soft X-ray source RX J0059.1-7505 (LIN 358).


Sign in / Sign up

Export Citation Format

Share Document