scholarly journals A Galactic ring of minimum stellar density near the solar orbit radius

2013 ◽  
Vol 435 (3) ◽  
pp. 2299-2321 ◽  
Author(s):  
D. A. Barros ◽  
J. R. D. Lépine ◽  
T. C. Junqueira
Keyword(s):  
2021 ◽  
Vol 502 (2) ◽  
pp. 2364-2380
Author(s):  
Nilanjan Banik ◽  
Jo Bovy ◽  
Gianfranco Bertone ◽  
Denis Erkal ◽  
T J L de Boer

ABSTRACT New data from the Gaia satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyse the stellar density variations in the GD-1 stream and show that they cannot be due to known baryonic structures such as giant molecular clouds, globular clusters, or the Milky Way’s bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses ≈107–$10^9 \ \rm {M}_{\odot }$. We infer a total abundance of dark subhaloes normalized to standard cold dark matter $n_{\rm sub}/n_{\rm sub, CDM} = 0.4 ^{+0.3}_{-0.2}$ (68 per cent), which corresponds to a mass fraction contained in the subhaloes $f_{\rm {sub}} = 0.14 ^{+0.11}_{-0.07} {{\ \rm per\ cent}}$, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.


1990 ◽  
Vol 140 ◽  
pp. 133-134
Author(s):  
J. Panesar ◽  
A.H. Nelson

We report here some preliminary results of 3–D numerical simulations of an α–ω dynamo in galaxies with differential rotation, small–scale turbulence, and a shock wave induced by a stellar density wave. We obtain the magnetic field from the standard dynamo equation, but include the spiral shock velocity field from a hydrodynamic simulation of the gas flow in a gravitational field with a spiral perturbation (Johns and Nelson, 1986).


2019 ◽  
Vol 489 (3) ◽  
pp. 3149-3161 ◽  
Author(s):  
Emily Sandford ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán

ABSTRACT When a planet is only observed to transit once, direct measurement of its period is impossible. It is possible, however, to constrain the periods of single transiters, and this is desirable as they are likely to represent the cold and far extremes of the planet population observed by any particular survey. Improving the accuracy with which the period of single transiters can be constrained is therefore critical to enhance the long-period planet yield of surveys. Here, we combine Gaia parallaxes with stellar models and broad-band photometry to estimate the stellar densities of K2 planet host stars, then use that stellar density information to model individual planet transits and infer the posterior period distribution. We show that the densities we infer are reliable by comparing with densities derived through asteroseismology, and apply our method to 27 validation planets of known (directly measured) period, treating each transit as if it were the only one, as well as to 12 true single transiters. When we treat eccentricity as a free parameter, we achieve a fractional period uncertainty over the true single transits of $94^{+87}_{-58}{{\ \rm per\ cent}}$, and when we fix e = 0, we achieve fractional period uncertainty $15^{+30}_{-6}{{\ \rm per\ cent}}$, a roughly threefold improvement over typical period uncertainties of previous studies.


2009 ◽  
Vol 5 (S266) ◽  
pp. 533-536
Author(s):  
João F. C. Santos ◽  
Alex A. Schmidt ◽  
Eduardo Bica

AbstractTo study the evolution of binary star clusters, we have imaged seven systems in the Small Magellanic Cloud with the SOAR 4m telescope using B and V filters. The sample contains pairs with well-separated components (d < 30 pc) as well as systems that apparently have merged, as evidenced by their unusual structures. By employing isochrone fitting to their color–magnitude diagrams, we have determined reddening values, ages and metallicities, and by fitting King models to their radial stellar-density profiles we estimated core radii. Disturbances of the density profiles are interpreted as evidence of interactions. Properties such as the distances between their components and their age differences are addressed in terms of the timescales involved, to assess the physical connection of the system. In two cases, the age difference is more than 50 Myr, which suggests a chance alignment, capture or sequential star formation.


2019 ◽  
Vol 487 (1) ◽  
pp. 364-380 ◽  
Author(s):  
Hui Li ◽  
Mark Vogelsberger ◽  
Federico Marinacci ◽  
Oleg Y Gnedin

Abstract Energetic feedback from star clusters plays a pivotal role in shaping the dynamical evolution of giant molecular clouds (GMCs). To study the effects of stellar feedback on the star formation efficiency of the clouds and the dynamical response of embedded star clusters, we perform a suite of isolated GMC simulations with star formation and momentum feedback subgrid models using the moving-mesh hydrodynamics code Arepo. The properties of our simulated GMCs span a wide range of initial mass, radius, and velocity configurations. We find that the ratio of the final stellar mass to the total cloud mass, ϵint, scales strongly with the initial cloud surface density and momentum feedback strength. This correlation is explained by an analytic model that considers force balancing between gravity and momentum feedback. For all simulated GMCs, the stellar density profiles are systematically steeper than that of the gas at the epochs of the peaks of star formation, suggesting a centrally concentrated stellar distribution. We also find that star clusters are always in a sub-virial state with a virial parameter ∼0.6 prior to gas expulsion. Both the sub-virial dynamical state and steeper stellar density profiles prevent clusters from dispersal during the gas removal phase of their evolution. The final cluster bound fraction is a continuously increasing function of ϵint. GMCs with star formation efficiency smaller than 0.5 are still able to form clusters with large bound fractions.


2019 ◽  
Vol 622 ◽  
pp. A29 ◽  
Author(s):  
Chandreyee Maitra ◽  
Frank Haberl ◽  
Valentin D. Ivanov ◽  
Maria-Rosa L. Cioni ◽  
Jacco Th. van Loon

Context. Finding active galactic nuclei (AGN) behind the Magellanic Clouds (MCs) is difficult because of the high stellar density in these fields. Although the first AGN behind the Small Magellanic Cloud (SMC) were reported in the 1980s, it is only recently that the number of AGN known behind the SMC has increased by several orders of magnitude. Aims. The mid-infrared colour selection technique has proven to be an efficient means of identifying AGN, especially obscured sources. The X-ray regime is complementary in this regard and we use XMM-Newton observations to support the identification of AGN behind the SMC. Methods. We present a catalogue of AGN behind the SMC by correlating an updated X-ray point-source catalogue from our XMM-Newton survey of the SMC with previously identified AGN from the literature as well as a list of candidates obtained from the ALLWISE mid-infrared colour-selection criterion. We studied the properties of the sample with respect to their redshifts, luminosities, and X-ray spectral characteristics. We also identified the near-infrared counterpart of the sources from the VISTA observations. Results. The redshift and luminosity distributions of the sample (where known) indicate that we detect sources ranging from nearby Seyfert galaxies to distant and obscured quasars. The X-ray hardness ratios are compatible with those typically expected for AGN, and the VISTA colours and variability are also consistent with AGN. A positive correlation was observed between the integrated X-ray flux (0.2–12 keV) and the ALLWISE and VISTA magnitudes. We further present a sample of new candidate AGN and candidates for obscured AGN. Together these make an interesting subset for further follow-up studies. An initial spectroscopic follow-up of 6 out of the 81 new candidates showed that all six sources are active galaxies, although two have narrow emission lines.


2020 ◽  
Vol 498 (1) ◽  
pp. 205-222
Author(s):  
João F C Santos ◽  
Francisco F S Maia ◽  
Bruno Dias ◽  
Leandro de O Kerber ◽  
Andrés E Piatti ◽  
...  

ABSTRACT We provide a homogeneous set of structural parameters of 83 star clusters located at the periphery of the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC). The clusters’ stellar density and surface brightness profiles were built from deep, AO assisted optical images, and uniform analysis techniques. The structural parameters were obtained from King and Elson et al. model fittings. Integrated magnitudes and masses (for a subsample) are also provided. The sample contains mostly low surface brightness clusters with distances between 4.5 and 6.5 kpc and between 1 and 6.5 kpc from the LMC and SMC centres, respectively. We analysed their spatial distribution and structural properties, comparing them with those of inner clusters. Half-light and Jacobi radii were estimated, allowing an evaluation of the Roche volume tidal filling. We found that: (i) for our sample of LMC clusters, the tidal radii are, on average, larger than those of inner clusters from previous studies; (ii) the core radii dispersion tends to be greater for LMC clusters located towards the southwest, with position angles of ∼200° and about ∼5° from the LMC centre, i.e. those LMC clusters nearer to the SMC; (iii) the core radius evolution for clusters with known age is similar to that of inner clusters; (iv) SMC clusters with galactocentric distances closer than 4 kpc are overfilling; (v) the recent Clouds collision did not leave marks on the LMC clusters’ structure that our analysis could reveal.


1996 ◽  
Vol 174 ◽  
pp. 19-28
Author(s):  
Puragra Guhathakurta ◽  
Brian Yanny ◽  
Donald P. Schneider ◽  
John N. Bahcall

We present results from an ongoing program to probe the dense central parts of Galactic globular clusters using multicolor Hubble Space Telescope images (WF/PC-I and WFPC2). Our sample includes the dense clusters M15, 47 Tuc, M30, NGC 6624, M3 and M13. The two main goals of our program are to measure the shape of stellar density profile in clusters (the slope of the density cusp in post core collapse clusters, in particular) and to understand the nature of evolved stellar populations in very dense regions and their variation as a function of radius. The latter includes studies of blue straggler stars and of the central depletion of bright red giants. Our recent WFPC2 study of M15 is described in detail.


1994 ◽  
Vol 158 ◽  
pp. 379-381
Author(s):  
A. Eckart ◽  
R. Genzel ◽  
R. Hofmann ◽  
B.J. Sams ◽  
L.E. Tacconi-Garman

We present deep 1.6 and 2.2 μm images of the central parsec of the Galaxy at a resolution of 0.15″. Most of the flux in earlier seeing limited images comes from about 340 unresolved stellar sources with K≤14. The IRS 16 and 13 complexes are resolved into about two dozen and half a dozen sources, a number of which are probably luminous hot stars. We confirm the presence of a blue near infrared object (K≈13) at the position of the compact radio source Sgr A∗. The spatial centroid of the source number distribution is consistent with the position of Sgr A∗ but not with a position in the IRS 16 complex. The stellar surface density in the central 10″ is very well fitted by an isothermal cluster model with a well defined core radius. The derived core radius of all 340 sources is 0.15±0.05 pc. The central stellar density is a few times 107 M⊙ pc−3. Buildup of massive stars by merging of lower mass stars and collisional disruption of giant atmospheres are very probable processes in the central 0.2 pc.


Sign in / Sign up

Export Citation Format

Share Document