scholarly journals The partial ionization zone of heavy elements in F-stars: a study on how it correlates with rotation

2019 ◽  
Vol 488 (2) ◽  
pp. 1558-1571 ◽  
Author(s):  
Ana Brito ◽  
Ilídio Lopes

ABSTRACT We study the relation between the internal structures of 10 benchmark main-sequence F-stars and their rotational properties. Stellar rotation of main-sequence F-type stars can be characterized by two distinct rotational regimes. Early-type F-stars are usually rapid rotators with periods typically below 10 d, whereas later-type F-stars have longer rotation periods. Specifically, and since the two rotational regimes are tightly connected to the effective temperatures of the stars, we investigate in detail the characteristics of the partial ionization zones in the outer convective envelopes of these stars, which in turn, depend on the internal temperature profiles. Our study shows that the two rotational regimes might be distinguished by the relative locations of the partial ionization region of heavy elements and the base of the convective zone. Since in all these stars is expected a dynamo-driven magnetic field where the shear layer between convective and radiative zones (tachocline) plays an important role, this result suggests that the magnetic field may be related to the combined properties of convection and ionization.

2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.


1970 ◽  
Vol 4 ◽  
pp. 73-81
Author(s):  
Isao Okamoto

AbstractThe braking of stellar rotation in the wholly convective phase in the pre-main sequence is numerically discussed. The structure of stars in that phase is expressed by a rotating polytrope with an index of 1.5 and the Schatzman-type mechanism is used as the means of loss of angular momentum. The magnetic energy is assumed to change with evolution as H02/8π(R/R0)s, where H0 and R0 are initial magnetic field and radius, and s is a free parameter. The changes of angular momentum, rotational velocity, etc. with contraction are calculated from the initial state, which is taken to be the state when the stars flared up to the Helmholtz-Kelvin contraction. It is shown that the exponent s must be in the range from – 1 to – 3 so that the stars with adequate strength of the initial magnetic field may lose almost all of their angular momenta in a suitable rate if they are initially in the state of rotational instability.Stellar rotation from the time of star formation to the main sequence stage is discussed. Also, the formation of the solar system and other planetary systems is discussed, with respect to the braking.


1993 ◽  
Vol 137 ◽  
pp. 669-671
Author(s):  
Yu. V. Glagolevskij

Young stars, as a rule, are too faint for measurements of magnetic field either by photographic method with the use of Zeeman analizer, or photoelectrically from hydrogen lines. That is why it is necessary to look for indirect ways of magnetic field detection, for example, by measurement of polarization. Ae/Be Herbig stars without a magnetic field are surrounded by a gaseous envelope in the form of a globe or a spheroid, flattened along the rotational axes (as dependent on stellar rotation velocity), and also by a gaseous-dust accretion disc in the plane of equator. There are powerful flows in gaseous envelopes of stars, connected with mass loss and accretion. If a star is a magnetic oblique rotator (as a magnetic star of the Main Sequence), then the gaseous envelope may acquire the shape of alon-gated ellipsoid with the major axes coincident with that of dipole (Dolginov et al., 1979). From the poles there arises a jet flow controlled by a magnetic field, as in He-r and He-w stars, having already reached the Main Sequence (Barker et al., 1982). Calculations show (Dolginov et al., 1979), that maximum polarization in the extended envelope p ≈ 4% arises when the ratio of ellipsoid axes is ≈ 2.5b. The electric vector of the dominating oscillation of the light wave is perpendicular to the plane through the axis of symmetry of the ellipsoid and the line of sight. Naturally, the magnetosphere rotates together with the star, involving the gaseous envelope, resulting in the variation of the degree and direction of polarization. Additional polarization is created by the polar jets, where the direction of the dominating oscillations of the electric vector is perpendicular to the axis of the polar stream, and value of maximal polarization may reach 5% along the beam.


2019 ◽  
Vol 623 ◽  
pp. L7 ◽  
Author(s):  
L. Haemmerlé ◽  
G. Meynet

Context. Supermassive stars (SMSs) are candidates for being progenitors of supermassive quasars at high redshifts. However, their formation process requires strong mechanisms that would be able to extract the angular momentum of the gas that the SMSs accrete. Aims. We investigate under which conditions the magnetic coupling between an accreting SMS and its winds can remove enough angular momentum for accretion to proceed from a Keplerian disc. Methods. We numerically computed the rotational properties of accreting SMSs that rotate at the ΩΓ-limit and estimated the magnetic field that is required to maintain the rotation velocity at this limit using prescriptions from magnetohydrodynamical simulations of stellar winds. Results. We find that a magnetic field of 10 kG at the stellar surface is required to satisfy the constraints on stellar rotation from the ΩΓ-limit. Conclusions. Magnetic coupling between the envelope of SMSs and their winds could allow for SMS formation by accretion from a Keplerian disc, provided the magnetic field is at the upper end of present-day observed stellar fields. Such fields are consistent with primordial origins.


2019 ◽  
Vol 628 ◽  
pp. A1 ◽  
Author(s):  
J. D. Landstreet ◽  
S. Bagnulo

We report the discovery of a new magnetic DA white dwarf (WD), WD 0011 − 721, which is located within the very important 20 pc volume-limited sample of the closest WDs to the Sun. This star has a mean field modulus ⟨|B|⟩ of 343 kG, and from the polarisation signal we deduce a line-of-sight field component of 75 kG. The magnetic field is sufficiently weak to have escaped detection in classification spectra. We then present a preliminary exploration of the data concerning the frequency of such fields among WDs with hydrogen-rich atmospheres (DA stars). We find that 20 ± 5% of the DA WDs in this volume have magnetic fields, mostly weaker than 1 MG. Unlike the slow field decay found among the magnetic Bp stars of the upper main sequence, the WDs in this sample show no evidence of magnetic field or flux changes over several Gyr.


1988 ◽  
Vol 123 ◽  
pp. 167-170
Author(s):  
Gaetano Belvedere

The overshoot layer in stellar convection zones is slightly subadiabatic and can be considered as a stable region for storage of magnetic flux. Belvedere, Pidatella and Stix (1986) estimated the size of the overshoot layer and computed the magnetic field strength, beyond which toroidal flux tubes become unstable to buoyancy, for a number of main sequence spectral types ranging from F5 to K0. Here we estimate the relative frequency perturbation of high order acoustic modes due to the presence of a non-oblique axisymmetric magnetic field in the overshoot layer. We find that increases with the advancing spectral type, the predicted frequency splitting being large enough to be detected by observations, at least for the Sun.We conclude that magnetic field induced frequency splitting of high order acoustic modes may well be due to a toroidal field of relatively moderate strength just beneath the bottom of the convection zone.


2019 ◽  
Vol 491 (1) ◽  
pp. L34-L39 ◽  
Author(s):  
Sivan Ginzburg ◽  
Eugene Chiang

ABSTRACT During the runaway phase of their formation, gas giants fill their gravitational spheres of influence out to Bondi or Hill radii. When runaway ends, planets shrink several orders of magnitude in radius until they are comparable in size to present-day Jupiter; in 1D models, the contraction occurs on the Kelvin–Helmholtz time-scale tKH, which is initially a few thousand years. However, if angular momentum is conserved, contraction cannot complete, as planets are inevitably spun up to their breakup periods Pbreak. We consider how a circumplanetary disc (CPD) can de-spin a primordially magnetized gas giant and remove the centrifugal barrier, provided the disc is hot enough to couple to the magnetic field, a condition that is easier to satisfy at later times. By inferring the planet’s magnetic field from its convective cooling luminosity, we show that magnetic spin-down times are shorter than contraction times throughout post-runaway contraction: tmag/tKH ∼ (Pbreak/tKH)1/21 ≲ 1. Planets can spin-down until they corotate with the CPD’s magnetospheric truncation radius, at a period Pmax/Pbreak ∼ (tKH/Pbreak)1/7. By the time the disc disperses, Pmax/Pbreak ∼ 20–30; further contraction at fixed angular momentum can spin planets back up to ∼10Pbreak, potentially explaining observed rotation periods of giant planets and brown dwarfs.


2017 ◽  
Vol 83 (2) ◽  
Author(s):  
Yongjie Ding ◽  
Peng Li ◽  
Xu Zhang ◽  
Liqiu Wei ◽  
Hezhi Sun ◽  
...  

The effect of the magnetic field gradient in the discharge channel of a Hall thruster on the ionization of the neutral gas and power deposition on the wall is studied through adopting the 2D-3V particle-in-cell (PIC) and Monte Carlo collisions (MCC) model. The research shows that by gradually increasing the magnetic field gradient while keeping the maximum magnetic intensity at the channel exit and the anode position unchanged, the ionization region moves towards the channel exit and then a second ionization region appears near the anode region. Meanwhile, power deposition on the walls decreases initially and then increases. To avoid power deposition on the walls produced by electrons and ions which are ionized in the second ionization region, the anode position is moved towards the channel exit as the magnetic field gradient is increased; when the anode position remains at the zero magnetic field position, power deposition on the walls decreases, which can effectively reduce the temperature and thermal load of the discharge channel.


2011 ◽  
Vol 22 (10) ◽  
pp. 1107-1137
Author(s):  
V. S. GEROYANNIS ◽  
A. G. KATELOUZOS ◽  
F. N. VALVI

We compute general-relativistic polytropic models of magnetized rotating neutron stars, assuming that magnetic field and rotation can be treated as decoupled perturbations acting on the nondistorted configuration. Concerning the magnetic field, we develop and apply a numerical method for solving the relativistic Grad–Shafranov equation as a nonhomogeneous Sturm–Liouville problem with nonstandard boundary conditions. We present significant geometrical and physical characteristics of six models, four of which are models of maximum mass. We find negative ellipticities owing to a magnetic field with both toroidal and poloidal components; thus the corresponding configurations have prolate shape. We also compute models of magnetized rotating neutron stars with almost spherical shape due to the counterbalancing of the rotational effect (tending to yield oblate configurations) and the magnetic effect (tending in turn to derive prolate configurations). In this work such models are simply called "equalizers." We emphasize on numerical results related to magnetars, i.e. ultramagnetized neutron stars with relatively long rotation periods.


Sign in / Sign up

Export Citation Format

Share Document