scholarly journals Compact planetary nebulae: improved IR diagnostic criteria based on classification tree modelling

2019 ◽  
Vol 488 (3) ◽  
pp. 3238-3250 ◽  
Author(s):  
Stavros Akras ◽  
Lizette Guzman-Ramirez ◽  
Denise R Gonçalves

Abstract Planetary nebulae (PNe) are strong H α line emitters and a lot of new PNe discoveries have been made by the SuperCOSMOS AAO/UKST H α Survey (SHS) and the Isaac Newton Telescope Photometric H α Survey (IPHAS). However, their resulting list of candidates turned out to be heavily contaminated from H α-line mimics like young stellar objects (YSOs) and/or H ii regions. The aim of this work is to find new infrared criteria that can better distinguish compact PNe from their mimics using a machine learning approach and the photometric data from the Two-Micron All-Sky Survey and Wide-field Infrared Survey Explorer. Three classification tree models have been developed with the following colour criteria: W1 − W4 ≥ 7.87 and J − H < 1.10; H − W2 ≥ 2.24 and J − H < 0.50; and Ks− W3 ≥ 6.42 and J − H < 1.31 providing a list of candidates, characterized by a high probability to be genuine PNe. The contamination of this list of candidates from H α mimics is low but not negligible. By applying these criteria to the IPHAS list of PN candidates and the entire IPHAS and VPHAS+ DR2 catalogues, we find 141 sources, from which 92 are known PNe, 39 are new very likely compact PNe (without an available classification or uncertain) and 10 are classified as H ii regions, Wolf–Rayet stars, AeBe stars, and YSOs. The occurrence of false-positive identifications in this technique is between 10 and 15 per cent.

2011 ◽  
Vol 7 (S283) ◽  
pp. 316-317 ◽  
Author(s):  
Rozenn Boissay ◽  
Quentin A. Parker ◽  
David J. Frew ◽  
Ivan Bojicic

AbstractThe total number of true, likely and possible planetary nebulae (PN) now known in the Milky Way is about 3000, approximately twice the number known a decade ago. The new discoveries are a legacy of the recent availability of wide-field, narrowband imaging surveys, primarily in the light of Hα. The two most important are the AAO/UKST SuperCOSMOS Hα survey SHS and the Isaac Newton photometric Hα survey IPHAS, which are responsible for most of the new discoveries. A serious problem with previous PN catalogs is that several different kinds of astrophysical objects are able to mimic PN in some of their observed properties leading to significant contamination. These objects include H~II regions and Strömgren zones around young O/B stars, reflection nebulae, Wolf-Rayet ejecta, supernova remnants, Herbig-Haro objects, young stellar objects, B[e] stars, symbiotic stars and outflows, late-type stars, cataclysmic variables, low redshift emission-line galaxies, and even image/detector flaws. PN catalogs such as the Macquarie/AAO/Strasbourg Hα Planetary Nebula catalog (MASH) have been carefully vetted to remove these mimics using the wealth of new wide-field multi-wavelength data and our 100% follow-up spectroscopy to produce a compilation of new PN discoveries of high purity. During this process significant numbers of PN mimics have been identified. The aim of this project is to compile these MASH rejects into a catalog of Miscellaneous Emission Nebulae (MEN) and to highlight the most unusual and interesting examples. A new global analysis of these MEN objects is underway before publishing the MEN catalog online categorizing objects by type together with their spectra and multi-wavelength images.


2020 ◽  
Vol 498 (4) ◽  
pp. 5109-5115
Author(s):  
T Yu Magakian ◽  
T A Movsessian ◽  
H R Andreasyan ◽  
J Bally ◽  
A S Rastorguev

ABSTRACT Looking for evidence of recent star formation, we have studied a small comet-shaped reflection nebula, known as BBWo 192E (GM 1–23), which is located in the dark cloud SL 4 in the Vela Molecular Ridge cloud C, and a young infrared cluster embedded into the nebula. We obtained the images of BBWo 192E in Hα and [S ii] lines and in a Sloan Digital Sky Survey i ′ filter with the Blanco telescope at the Cerro Tololo Inter-American Observatory in order to discover new Herbig–Haro (HH) flows. We used the Two-Micron All-Sky Survey and the Wide-field Infrared Survey Explorer to search for additional member stars of the cluster. We also studied the proper motions and parallaxes of the cluster members using GAIA Data Release 2. Five new groups containing at least nine HH objects, tracing several distinct outflows, were revealed. A previously unreported reflection nebula and a number of probable outflow sources were found in the infrared range. The proper motions allowed us to select eight probable member stars in the visual range. Their parallaxes correspond to a mean distance 800 ± 100 pc for this cluster. The bolometric luminosities of the brightest cluster members are 1010 L⊙ (IRAS 08513−4201, the strong source in the centre of the cluster) and 2–6 L⊙ for the five other stars. The existence of optical HH flows around the infrared cluster of young stellar objects suggests that star formation in this cloud is ongoing around the more massive Herbig Ae/Be star. Considering its morphology and other features, this star-forming region is similar to the zone of star formation near CPM 19.


2019 ◽  
Vol 487 (1) ◽  
pp. 1315-1334 ◽  
Author(s):  
Lixia Yuan ◽  
Ming Zhu ◽  
Tie Liu ◽  
Jinghua Yuan ◽  
Yuefang Wu ◽  
...  

Abstract We present a multiwavelength study of the Planck Galactic cold clump G181.84+0.31, which is located at the northern end of the extended filamentary structure S242. We have extracted nine compact dense cores from the SCUBA-2 850-$\hbox{$\mu $m}$ map, and we have identified 18 young stellar objects (YSOs; four Class I and 14 Class II) based on their Spitzer, Wide-field Infrared Survey Explorer(WISE) and Two-Micron All-Sky Survey (2MASS) near- and mid-infrared colours. The dense cores and YSOs are mainly distributed along the filamentary structures of G181.84 and are well traced by HCO+(1–0) and N2H+(1–0) spectral-line emission. We find signatures of sequential star formation activities in G181.84: dense cores and YSOs located in the northern and southern substructures are younger than those in the central region. We also detect global velocity gradients of about 0.8 ± 0.05 and 1.0 ± 0.05 km s−1 pc−1 along the northern and southern substructures, respectively, and local velocity gradients of 1.2 ± 0.1 km s−1 pc−1 in the central substructure. These results might be due to the fact that the global collapse of the extended filamentary structure S242 is driven by an edge effect, for which the filament edges collapse first and then further trigger star formation activities inward. We identify three substructures in G181.84 and estimate their critical masses per unit length, which are ∼101 ± 15, 56 ± 8 and 28 ± 4 M⊙ pc−1, respectively. These values are all lower than the observed values (∼200 M⊙ pc−1), suggesting that these substructures are gravitationally unstable.


2020 ◽  
Vol 496 (1) ◽  
pp. 870-874
Author(s):  
M B Areal ◽  
A Buccino ◽  
S Paron ◽  
C Fariña ◽  
M E Ortega

ABSTRACT Evidence for triggered star formation linking three generations of stars is difficult to assemble, as it requires convincingly associating evolved massive stars with H ii regions that, in turn, would need to present signs of active star formation. We present observational evidence for triggered star formation relating three generations of stars in the neighbourhood of the star LS II +26 8. We carried out new spectroscopic observations of LS II +26 8, revealing that it is a B0 III-type star. We note that LS II +26 8 is located exactly at the geometric centre of a semi-shell-like H ii region complex. The most conspicuous component of this complex is the H ii region Sh2-90, which is probably triggering a new generation of stars. The distances to LS II +26 8 and to Sh2-90 are in agreement (between 2.6 and 3 kpc). Analysis of the interstellar medium on a larger spatial scale shows that the H ii region complex lies on the north-western border of an extended H2 shell. The radius of this molecular shell is about 13 pc, which is in agreement with what an O9 V star (the probable initial spectral type of LS II +26 8 as inferred from evolutive tracks) can generate through its winds in the molecular environment. In conclusion, the spatial and temporal correspondences derived in our analysis enable us to propose a probable triggered star formation scenario initiated by the evolved massive star LS II +26 8 during its main-sequence stage, followed by stars exciting the H ii region complex formed in the molecular shell, and culminating in the birth of young stellar objects around Sh2-90.


2019 ◽  
Vol 487 (2) ◽  
pp. 2522-2537 ◽  
Author(s):  
G Marton ◽  
P Ábrahám ◽  
E Szegedi-Elek ◽  
J Varga ◽  
M Kun ◽  
...  

ABSTRACT The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 data base with Wide-field Infrared Survey Explorer (WISE) and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars, and evolved stars. At a 90 per cent probability threshold, we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star-forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disc. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30 per cent more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.


2019 ◽  
Vol 487 (2) ◽  
pp. 1517-1528 ◽  
Author(s):  
Xu Li ◽  
Jarken Esimbek ◽  
Jianjun Zhou ◽  
W A Baan ◽  
Weiguang Ji ◽  
...  

Abstract A multi-wavelength analysis of the large Galactic infrared bubble N 24 is presented in this paper in order to investigate the molecular and star-formation environment around expanding H ii regions. Using archival data from Herschel and ATLASGAL, the distribution and physical properties of the dust over the entire bubble are studied. Using the Clumpfind2d algorithm, 23 dense clumps are identified, with sizes and masses in the range 0.65–1.73 pc and 600–16 300 M⊙, respectively. To analyse the molecular environment in N 24, observations of NH3 (1,1) and (2,2) were carried out using the Nanshan 26-m radio telescope. Analysis of the kinetic temperature and gravitational stability of these clumps suggests gravitational collapse in several of them. The mass–size distributions of the clumps and the presence of massive young protostars indicate that the shell of N 24 is a region of ongoing massive-star formation. The compatibility of the dynamical and fragmentation timescales and the overabundance of young stellar objects and clumps on the rim suggest that the ‘collect-and-collapse’ mechanism is in play at the boundary of the bubble, but the existence of the infrared dark cloud at the edge of bubble indicates that a ‘radiation-driven implosion’ mechanism may also have played a role there.


Author(s):  
W. J. Fischer ◽  
D. L. Padgett ◽  
K. R. Stapelfeldt

AbstractThe photometric data returned by WISE, the Wide-field Infrared Survey Explorer, can be used to search the sky for young stellar objects (YSOs) away from the molecular clouds studied in detail by Spitzer and Herschel. We present updated results for a 100 deg2 region centered on Canis Major, including a look at the clustering properties of YSOs in the region.


1999 ◽  
Vol 51 (6) ◽  
pp. 791-818 ◽  
Author(s):  
Reiko Yamaguchi ◽  
Hiro Saito ◽  
Norikazu Mizuno ◽  
Yoshihiro Mine ◽  
Akira Mizuno ◽  
...  

Abstract We have carried out extensive 13CO(J = 1−0) observations toward 23 southern H II regions associated with bright-rimmed clouds. In total, 95 molecular clouds have been identified to be associated with the H II regions. Among the 95, 57 clouds \ are found to be associated with 204 IRAS point sources which are candidates for young stellar objects. There is a significant increase of star-formation efficiency on the side facing to the H II regions; the luminosity-to-mass ratio, defined as the ratio of the stellar luminosity to the molecular cloud mass, is higher by an order of magnitude on the near side of the H II regions than that on the far side. This indicates that molecular gas facing to the H II regions is more actively forming massive s\ tars whose luminosity is ≳103L⊙. In addition, the number density of the IRAS point sources increases by a factor of 2 on the near side of the H II regions compared with on the far side. These results strongly suggest that the active formation of massive stars on the near side of the H II regions is due to the effects of the H II regions, such as the compression of molecular material by the ionization/shock fronts. For the whole Galaxy, we estimate that the present star-formation rate under such effects is at least 0.2−0.4 M⊙ yr-1, corresponding to a few 10% by mass.


2006 ◽  
Vol 2 (S237) ◽  
pp. 217-221
Author(s):  
Miriam Rengel ◽  
Klaus Hodapp ◽  
Jochen Eislöffel

AbstractAccording to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.


Sign in / Sign up

Export Citation Format

Share Document