scholarly journals Testing a quintessence model with Yukawa interaction from cosmological observations and N-body simulations

2019 ◽  
Vol 489 (1) ◽  
pp. 297-309 ◽  
Author(s):  
Rui An ◽  
André A Costa ◽  
Linfeng Xiao ◽  
Jiajun Zhang ◽  
Bin Wang

ABSTRACT We consider a quintessence model with Yukawa interaction between dark energy and dark matter and constrain this model by employing the recent cosmological data including the updated cosmic microwave background (CMB) measurements from Planck 2015, the weak gravitational lensing measurements from Kilo Degree Survey (KiDS), and redshift-space distortions. We find that an interaction in the dark sector is compatible with observations. The updated Planck data can significantly improve the constraints compared with the previous results from Planck 2013, while the KiDS data have less constraining power than Planck. The Yukawa interaction model is found to be moderately favoured by Planck and able to alleviate the discordance between weak lensing measurements and CMB measurements as previously inferred from the standard Lambda cold dark matter model. N-body simulations for Yukawa interaction model is also performed. We find that using the halo density profile is plausible to improve the constraints significantly in the future.

2019 ◽  
Vol 490 (1) ◽  
pp. 1406-1414 ◽  
Author(s):  
Suresh Kumar ◽  
Rafael C Nunes ◽  
Santosh Kumar Yadav

ABSTRACT Dark matter (DM) as a pressureless perfect fluid provides a good fit of the standard Λ cold dark matter (ΛCDM) model to the astrophysical and cosmological data. In this paper, we investigate two extended properties of DM: a possible time dependence of the equation of state of DM via Chevallier–Polarski–Linder parametrization, wdm = wdm0 + wdm1(1 − a), and the constant non-null sound speed $\hat{c}^2_{\rm s,dm}$. We analyse these DM properties on top of the base ΛCDM model by using the data from Planck cosmic microwave background (CMB) temperature and polarization anisotropy, baryonic acoustic oscillations (BAOs), and the local value of the Hubble constant from the Hubble Space Telescope (HST). We find new and robust constraints on the extended free parameters of DM. The most tight constraints are imposed by CMB+BAO data, where the three parameters wdm0, wdm1, and $\hat{c}^2_{\rm s,dm}$ are, respectively, constrained to be less than 1.43 × 10−3, 1.44 × 10−3, and 1.79 × 10−6 at 95 per cent CL. All the extended parameters of DM show consistency with zero at 95 per cent CL, indicating no evidence beyond the CDM paradigm. We notice that the extended properties of DM significantly affect several parameters of the base ΛCDM model. In particular, in all the analyses performed here, we find significantly larger mean values of H0 and lower mean values of σ8 in comparison to the base ΛCDM model. Thus, the well-known H0 and σ8 tensions might be reconciled in the presence of extended DM parameters within the ΛCDM framework. Also, we estimate the warmness of DM particles as well as its mass scale, and find a lower bound: ∼500 eV from our analyses.


2015 ◽  
Vol 112 (40) ◽  
pp. 12249-12255 ◽  
Author(s):  
David H. Weinberg ◽  
James S. Bullock ◽  
Fabio Governato ◽  
Rachel Kuzio de Naray ◽  
Annika H. G. Peter

The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.


2019 ◽  
Vol 28 (01) ◽  
pp. 1930002
Author(s):  
Roberto Dale ◽  
Diego Sáez

The cosmic microwave background (CMB) anisotropies predicted by two cosmological models are compared, one of them is the standard model of general relativity with cold dark matter and cosmological constant, whereas the second model is based on a consistent vector-tensor theory of gravitation explaining solar system and cosmological observations. It is proved that the resulting differences — between the anisotropies of both models — are due to the so-called late integrated Sachs–Wolfe effect and, consequently, cross-correlations between maps of CMB temperatures and tracers of the dark matter distribution could be used in future to select one of the above models. The role of reionization is analyzed in detail.


2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


Author(s):  
Robert R. Caldwell

The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress–energy and space–time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.


1987 ◽  
Vol 124 ◽  
pp. 415-432
Author(s):  
Avishai Dekel

Although some theories, such as that of cold dark matter, are quite successful in explaining certain aspects of the formation of structure, we seem not to approach a satisfactory theory which can easily account for all the observational constraints on all scales. Most difficult to explain are the indicated clustering of clusters and bulk velocities on very large scales, when considered together with the structure on galactic scales and the isotropy of the microwave background. If these observations are correct, the only scenarios that can work are hybrids of certain sorts, which involve somewhat ad hoc choices of parameters; they are not the theories that would have emerged naturally from first principles, and they do not satisfy the criteria of simplicity and elegancy. I will discuss the currently popular scenarios and the apparent difficulties they face.


2019 ◽  
Vol 490 (1) ◽  
pp. 813-831 ◽  
Author(s):  
Daniel B Thomas ◽  
Michael Kopp ◽  
Katarina Markovič

ABSTRACT Constraints on the properties of the cosmological dark matter have previously been obtained in a model-independent fashion using the generalized dark matter (GDM) framework. Here we extend that work in several directions: We consider the inclusion of WiggleZ matter power spectrum data (MPS), and show that this improves the constraints on the two perturbative GDM parameters, $c^2_\mathrm{ s}$ and $c^2_\text{vis}$, by a factor of 3, for a conservative choice of wavenumber range. A less conservative choice can yield an improvement of up to an order of magnitude compared to previous constraints. In order to examine the robustness of this result we develop a GDM halo model (HM) to explore how non-linear structure formation could proceed in this framework, since currently GDM has only been defined perturbatively and only linear theory has been used when generating constraints. We then examine how the HM affects the constraints obtained from the MPS data. The less-conservative wavenumber range shows a significant difference between linear and non-linear modelling, with the latter favouring GDM parameters inconsistent with ΛCDM, underlining the importance of careful non-linear modelling when using this data. We also use this HM to establish the robustness of previously obtained constraints, particularly those that involve weak gravitational lensing of the cosmic microwave background. Additionally, we show how the inclusion of neutrino mass as a free parameter affects previous constraints on the GDM parameters.


Sign in / Sign up

Export Citation Format

Share Document