scholarly journals A gravitational puzzle

Author(s):  
Robert R. Caldwell

The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress–energy and space–time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.

2008 ◽  
Vol 23 (02) ◽  
pp. 139-152 ◽  
Author(s):  
JINGFEI ZHANG ◽  
XIN ZHANG ◽  
HONGYA LIU

Observations of high-redshift supernovae indicate that the universe is accelerating at the present stage, and we refer to the cause for this cosmic acceleration as "dark energy". In particular, the analysis of current data of type Ia supernovae (SNIa), cosmic large-scale structure (LSS), and the cosmic microwave background (CMB) anisotropy implies that, with some possibility, the equation-of-state parameter of dark energy may cross the cosmological-constant boundary (w = -1) during the recent evolution stage. The model of "quintom" has been proposed to describe this w = -1 crossing behavior for dark energy. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. In this paper, we reconstruct the generalized ghost condensate model in the light of three forms of parametrization for dynamical dark energy, with the best-fit results of up-to-date observational data.


2019 ◽  
Vol 490 (1) ◽  
pp. 813-831 ◽  
Author(s):  
Daniel B Thomas ◽  
Michael Kopp ◽  
Katarina Markovič

ABSTRACT Constraints on the properties of the cosmological dark matter have previously been obtained in a model-independent fashion using the generalized dark matter (GDM) framework. Here we extend that work in several directions: We consider the inclusion of WiggleZ matter power spectrum data (MPS), and show that this improves the constraints on the two perturbative GDM parameters, $c^2_\mathrm{ s}$ and $c^2_\text{vis}$, by a factor of 3, for a conservative choice of wavenumber range. A less conservative choice can yield an improvement of up to an order of magnitude compared to previous constraints. In order to examine the robustness of this result we develop a GDM halo model (HM) to explore how non-linear structure formation could proceed in this framework, since currently GDM has only been defined perturbatively and only linear theory has been used when generating constraints. We then examine how the HM affects the constraints obtained from the MPS data. The less-conservative wavenumber range shows a significant difference between linear and non-linear modelling, with the latter favouring GDM parameters inconsistent with ΛCDM, underlining the importance of careful non-linear modelling when using this data. We also use this HM to establish the robustness of previously obtained constraints, particularly those that involve weak gravitational lensing of the cosmic microwave background. Additionally, we show how the inclusion of neutrino mass as a free parameter affects previous constraints on the GDM parameters.


2013 ◽  
Vol 22 (13) ◽  
pp. 1330026 ◽  
Author(s):  
BRETT BOCHNER

We review the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in from distant structure-forming regions. The formalism detailed here incorporates the effects of "recursive nonlinearities": the process by which already-established metric perturbations will subsequently act to slow-down all future flows of inhomogeneity information. Despite such effects, we find viable cosmological models in which causal backreaction successfully serves as a replacement for Dark Energy, via the adoption of relatively large values for the dimensionless "strength" of the clustering evolution functions being modeled. These large values are justified by the hierarchical nature of clustering and virialization in the universe, which occurs on multiple cosmic length scales simultaneously; moreover, the clustering model amplitudes needed to match the apparent acceleration can be moderated via the incorporation of a model parameter representing the late-time slow-down of clustering due to astrophysical feedback processes. In summary, an alternative cosmic concordance can be achieved for a matter-only universe in which the apparent acceleration observed is generated entirely by causal backreaction effects. Lastly, considering the long-term fate of the universe, while the possibility of an "eternal" acceleration due to causal backreaction seems unlikely, this conclusion does not take into account the large-scale breakdown of cosmological isotropy in the far future, or the eventual ubiquity of gravitationally-nonlinear perturbations.


2017 ◽  
Vol 45 ◽  
pp. 1760009 ◽  
Author(s):  
Wen Zhao ◽  
Larissa Santos

In both WMAP and Planck observations on the temperature anisotropy of cosmic microwave background (CMB) radiation a number of large-scale anomalies were discovered in the past years, including the CMB parity asymmetry in the low multipoles. By defining a directional statistics, we find that the CMB parity asymmetry is directional dependent, and the preferred axis is stable, which means that it is independent of the chosen CMB map, the definition of the statistic, or the CMB masks. Meanwhile, we find that this preferred axis strongly aligns with those of the CMB quadrupole, octopole, as well as those of other large-scale observations. In addition, all of them aligns with the CMB kinematic dipole, which hints to the non-cosmological origin of these directional anomalies in cosmological observations.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 125-133
Author(s):  
David N. Spergel

We seem to live in a simple but strange universe. Our basic cosmological model fits a host of astronomical observations with only five basic parameters: the age of the universe, the density of atoms, the density of matter, the initial “lumpiness” of the universe, and a parameter that describes whether this lumpiness is more pronounced on smaller physical scales. Our observations of the cosmic microwave background fluctuations determine these parameters with uncertainties of only 1 to 2 percent. The same model also provides an excellent fit to the large-scale clustering of galaxies and gas, the properties of galaxy clusters, observations of gravitational lensing, and supernova-based measurements of the Hubble relation. This model implies that we live in a strange universe: atoms make up only 4 percent of the visible universe, dark matter makes up 24 percent, and dark energy – energy associated with empty space – makes up 72 percent.


2021 ◽  
Vol 923 (2) ◽  
pp. 153
Author(s):  
Fuyu Dong ◽  
Pengjie Zhang ◽  
Le Zhang ◽  
Ji Yao ◽  
Zeyang Sun ◽  
...  

Abstract Low-density points (LDPs), obtained by removing high-density regions of observed galaxies, can trace the large-scale structures (LSSs) of the universe. In particular, it offers an intriguing opportunity to detect weak gravitational lensing from low-density regions. In this work, we investigate the tomographic cross-correlation between Planck cosmic microwave background (CMB) lensing maps and LDP-traced LSSs, where LDPs are constructed from the DR8 data release of the DESI legacy imaging survey, with about 106–107 galaxies. We find that, due to the large sky coverage (20,000 deg2) and large redshift depth (z ≤ 1.2), a significant detection (10σ–30σ) of the CMB lensing–LDP cross-correlation in all six redshift bins can be achieved, with a total significance of ∼53σ over ℓ ≤ 1024. Moreover, the measurements are in good agreement with a theoretical template constructed from our numerical simulation in the WMAP 9 yr ΛCDM cosmology. A scaling factor for the lensing amplitude A lens is constrained to A lens = 1 ± 0.12 for z < 0.2, A lens = 1.07 ± 0.07 for 0.2 < z < 0.4, and A lens = 1.07 ± 0.05 for 0.4 < z < 0.6, with the r-band absolute magnitude cut of −21.5 for LDP selection. A variety of tests have been performed to check the detection reliability against variations in LDP samples and galaxy magnitude cuts, masks, CMB lensing maps, multipole ℓ cuts, sky regions, and photo-z bias. We also perform a cross-correlation measurement between CMB lensing and galaxy number density, which is consistent with the CMB lensing–LDP cross-correlation. This work therefore further convincingly demonstrates that LDP is a competitive tracer of LSS.


Author(s):  
Pablo Fosalba ◽  
Enrique Gaztañaga

Abstract The origin of power asymmetry and other measures of statistical anisotropy on the largest scales of the universe, as manifested in Cosmic Microwave Background (CMB) and large-scale structure data, is a long-standing open question in cosmology. In this paper we analyse the Planck Legacy temperature anisotropy data and find strong evidence for a violation of the Cosmological principle of isotropy, with a probability of being a statistical fluctuation of order ∼10−9. The detected anisotropy is related to large-scale directional ΛCDM cosmological parameter variations across the CMB sky, that are sourced by three distinct patches in the maps with circularly-averaged sizes between 40 to 70 degrees in radius. We discuss the robustness of our findings to different foreground separation methods and analysis choices, and find consistent results from WMAP data when limiting the analysis to the same scales. We argue that these well-defined regions within the cosmological parameter maps may reflect finite and casually disjoint horizons across the observable universe. In particular we show that the observed relation between horizon size and mean dark energy density within a given horizon is in good agreement with expectations from a recently proposed model of the universe that explains cosmic acceleration and cosmological parameter tensions between the high and low redshift universe from the existence of casual horizons within our universe.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


2012 ◽  
Vol 2012 ◽  
pp. 1-34 ◽  
Author(s):  
Julien Lesgourgues ◽  
Sergio Pastor

Neutrinos can play an important role in the evolution of the universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos, and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.


2006 ◽  
Vol 15 (11) ◽  
pp. 1753-1935 ◽  
Author(s):  
EDMUND J. COPELAND ◽  
M. SAMI ◽  
SHINJI TSUJIKAWA

We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.


Sign in / Sign up

Export Citation Format

Share Document