scholarly journals A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes

2019 ◽  
Vol 491 (3) ◽  
pp. 4523-4542 ◽  
Author(s):  
Jonathan Freundlich ◽  
Avishai Dekel ◽  
Fangzhou Jiang ◽  
Guy Ishai ◽  
Nicolas Cornuault ◽  
...  

ABSTRACT We present a simple model for the response of a dissipationless spherical system to an instantaneous mass change at its centre, describing the formation of flat cores in dark matter haloes and ultra-diffuse galaxies (UDGs) from feedback-driven outflow episodes in a specific mass range. This model generalizes an earlier simplified analysis of an isolated shell into a system with continuous density, velocity, and potential profiles. The response is divided into an instantaneous change of potential at constant velocities due to a given mass-loss or mass-gain, followed by energy-conserving relaxation to a new Jeans equilibrium. The halo profile is modelled by a two-parameter function with a variable inner slope and an analytic potential profile, which enables determining the associated kinetic energy at equilibrium. The model is tested against NIHAO cosmological zoom-in simulations, where it successfully predicts the evolution of the inner dark matter profile between successive snapshots in about 75 per cent of the cases, failing mainly in merger situations. This model provides a simple understanding of the formation of dark matter halo cores and UDGs by supernova-driven outflows, and a useful analytic tool for studying such processes.

2016 ◽  
Vol 26 (07) ◽  
pp. 1750063 ◽  
Author(s):  
Arata Aoki ◽  
Jiro Soda

The ultralight axion with mass around [Formula: see text][Formula: see text]eV is known as a candidate of dark matter. A peculiar feature of the ultralight axion is oscillating pressure in time, which produces oscillation of gravitational potentials. Since the solar system moves through the dark matter halo at the velocity of about [Formula: see text], there exists axion wind, which looks like scalar gravitational waves for us. Hence, there is a chance to detect ultralight axion dark matter with a wide mass range by using laser interferometer detectors. We calculate the detector signal induced by the oscillating pressure of the ultralight axion field, which would be detected by future laser interferometer experiments. We also argue that the detector signal can be enhanced due to the resonance in modified gravity theory explaining the dark energy.


2020 ◽  
Vol 497 (2) ◽  
pp. 2393-2417 ◽  
Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
T K Chan ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.


1996 ◽  
Vol 173 ◽  
pp. 209-214
Author(s):  
C.W. Stubbs ◽  
C. Alcock ◽  
R.A. Allsman ◽  
D. Alves ◽  
T.S. Axelrod ◽  
...  

Gravitational microlensing is the most straightforward interpretation of the stellar brightenings that have been observed by our team and other experiments. These data have provided some of the most stringent limits to date on the nature of the Galaxy's dark matter halo. The number of events seen towards the LMC indicate that our Galaxy is not surrounded by a “standard” halo of MACHOs in the mass range of 10–6 to 0.3 solar masses. The observed optical depth towards the Galactic Center is an important constraint on the distribution of mass in the plane of the Galaxy.


2014 ◽  
Vol 29 (19) ◽  
pp. 1443004 ◽  
Author(s):  
T. M. Shokair ◽  
J. Root ◽  
K. A. Van Bibber ◽  
B. Brubaker ◽  
Y. V. Gurevich ◽  
...  

The axion is a light pseudoscalar particle which suppresses CP-violating effects in strong interactions and also happens to be an excellent dark matter candidate. Axions constituting the dark matter halo of our galaxy may be detected by their resonant conversion to photons in a microwave cavity permeated by a magnetic field. The current generation of the microwave cavity experiment has demonstrated sensitivity to plausible axion models, and upgrades in progress should achieve the sensitivity required for a definitive search, at least for low mass axions. However, a comprehensive strategy for scanning the entire mass range, from 1–1000 μeV, will require significant technological advances to maintain the needed sensitivity at higher frequencies. Such advances could include sub-quantum-limited amplifiers based on squeezed vacuum states, bolometers, and/or superconducting microwave cavities. The Axion Dark Matter eXperiment at High Frequencies (ADMX-HF) represents both a pathfinder for first data in the 20–100 μeV range (~5–25 GHz), and an innovation test-bed for these concepts.


2019 ◽  
Vol 488 (2) ◽  
pp. 2673-2688
Author(s):  
Hoyoung D Kang ◽  
Massimo Ricotti

ABSTRACT Stellar haloes observed around normal galaxies are extended and faint stellar structures formed by debris of tidally disrupted dwarf galaxies accreted overtime by the host galaxy. Around dwarf galaxies, these stellar haloes may not exist if all the accreted satellites are dark haloes without stars. However, if a stellar halo is found in sufficiently small mass dwarfs, the whole stellar halo is composed of tidal debris of fossil galaxies, and we refer to it as ghostly halo. Fossil galaxies are so called because they formed most of their stars before the epoch of reionization, and have been identified as the ultrafaint dwarf galaxies found around the Milky Way and M31. In this paper, we carry out semi-analytical simulations to characterize the sizes and stellar masses of ghostly stellar haloes in dwarf galaxies as a function of their dark matter halo mass. By comparing the models to observations of six isolated dwarf galaxies in the Local Group showing evidence of extended stellar haloes, we are able to constrain the star formation efficiency in fossil galaxies. We find that at redshift z ∼ 6, dark matter haloes in the mass range 107–109 M⊙ have a mean star formation efficiency $f_* \equiv M_*/M_{\mathrm{ dm}} \sim 0.1\!-\!0.2\hbox{ per cent}$ nearly constant as a function of the dark matter halo mass.


2020 ◽  
Vol 493 (1) ◽  
pp. 1268-1276
Author(s):  
Andrew J Benson

ABSTRACT Simulations of cold dark matter make robust predictions about the slope and normalization of the dark matter halo and subhalo mass functions on small scales. Recent observational advances utilizing strong gravitational lensing have demonstrated the ability of this technique to place constraints on these quantities on subgalactic scales corresponding to dark matter halo masses of 106–$10^9\, \mathrm{M}_\odot$. On these scales the physics of baryons, which make up around 17 per cent of the matter content of the Universe but which are not included in pure dark matter N-body simulations, are expected to affect the growth of structure and the collapse of dark matter haloes. In this work, we develop a semi-analytic model to predict the amplitude and slope of the dark matter halo and subhalo mass functions on subgalactic scales in the presence of baryons. We find that the halo mass function is suppressed by up to 25 per cent, and the slope is modified, ranging from −1.916 to −1.868 in this mass range. These results are consistent with current measurements, but differ sufficiently from the expectations for a dark matter only universe that it may be testable in the near future.


2011 ◽  
Vol 01 ◽  
pp. 245-251
Author(s):  
NICOLE F. BELL

We examine dark matter annihilation in galaxy halos. By considering annihilation into all Standard Model particles we show that the least detectable final states, namely neutrinos, define a strong general upper bound on the total cross section. This limit is much stronger than the unitarity bound in the most interesting mass range and implies annihilation cannot significantly modify dark matter halo density profiles. We also calculate conservative upper limits on the self-annihilation cross section to monoenergetic gamma rays over a wide range of dark matter masses, using gamma-ray data from the Milky Way, Andromeda (M31), and the cosmic background. We compare gamma-ray-based and neutrino-based upper limits on the total cross section.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


Sign in / Sign up

Export Citation Format

Share Document