scholarly journals Exploring the radial disc ionization profile of the black hole X-ray binary GRS 1915+105

2019 ◽  
Vol 492 (1) ◽  
pp. 405-412 ◽  
Author(s):  
Soumya Shreeram ◽  
Adam Ingram

ABSTRACT Accreting black holes show characteristic ‘reflection’ features in their X-ray spectra, including the iron K α fluorescence line, which result from X-rays radiated by a compact central corona being reprocessed in the accretion disc atmosphere. The observed line profile is distorted by relativistic effects, providing a diagnostic for disc geometry. Nearly all previous X-ray reflection spectroscopy studies have made the simplifying assumption that the disc ionization state is independent of radius in order to calculate the rest-frame reflection spectrum. However, this is unlikely to be the case in reality, since the irradiating flux should drop off steeply with radius. Here, we analyse a Nuclear Spectroscopic Telescope Array observation of GRS 1915+105 that exhibits strong reflection features. We find that using a self-consistently calculated radial ionization profile returns a better fit than assuming constant ionization. Our results are consistent with the inner disc being radiation-pressure dominated, as is expected from the high inferred accretion rate for this observation. We also find that the assumed ionization profile impacts on the best-fitting disc inner radius. This implies that the black hole spin values previously inferred for active galactic nuclei and X-ray binaries by equating the disc inner radius with the innermost stable circular orbit may be changed significantly by the inclusion of a self-consistent ionization profile.

2020 ◽  
Vol 493 (4) ◽  
pp. 5389-5396 ◽  
Author(s):  
A C Fabian ◽  
D J Buisson ◽  
P Kosec ◽  
C S Reynolds ◽  
D R Wilkins ◽  
...  

ABSTRACT The Galactic black hole X-ray binary MAXI J1820+070 had a bright outburst in 2018 when it became the second brightest X-ray source in the sky. It was too bright for X-ray CCD instruments such as XMM–Newton and Chandra, but was well observed by photon-counting instruments such as Neutron star Inner Composition Explorer (NICER) and Nuclear Spectroscopic Telescope Array(NuSTAR). We report here on the discovery of an excess-emission component during the soft state. It is best modelled with a blackbody spectrum in addition to the regular disc emission, modelled as either diskbb or kerrbb. Its temperature varies from about 0.9 to 1.1 keV, which is about 30–80 per cent higher than the inner disc temperature of diskbb. Its flux varies between 4 and 12 per cent of the disc flux. Simulations of magnetized accretion discs have predicted the possibility of excess emission associated with a non-zero torque at the innermost stable circular orbit (ISCO) about the black hole, which, from other NuSTAR studies, lies at about 5 gravitational radii or about 60 km (for a black hole, mass is $8\, {\rm M}_{\odot }$). In this case, the emitting region at the ISCO has a width varying between 1.3 and 4.6 km and would encompass the start of the plunge region where matter begins to fall freely into the black hole.


2020 ◽  
Vol 644 ◽  
pp. A132
Author(s):  
F. Ursini ◽  
M. Dovčiak ◽  
W. Zhang ◽  
G. Matt ◽  
P.-O. Petrucci ◽  
...  

Aims. We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. However, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. Methods. We employ a relativistic ray-tracing code, originally developed by Dovčiak and Done, that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies using simultaneous optical/UV and X-ray archival data from XMM-Newton. Results. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona, which is due to a larger and hotter inner disc area. The maximal spin solution is favoured, as it predicts an X-ray photon index in better agreement with the observations.


2012 ◽  
Vol 8 (S290) ◽  
pp. 299-300
Author(s):  
Erlin Qiao ◽  
Bifang Liu

AbstractRecent observations reveal that a cool disk may survive in the innermost stable circular orbit (ISCO) for some black hole X-ray binaries in the low/hard state. The spectrum is characterized by a power law with a photon index Γ ~ 1.5-2.1 in the range of 2-10 keV and a weak disk component with temperature of ~ 0.2 keV. The formation of such a cool disk in the most inner region of black hole X-ray binaries at the low/hard state is investigated within the framework of disk accretion fed by condensation of hot corona. We also calculate the emergent spectra of the inner disk and corona. It's found that our model can very well explain the spectral features of GX 339-4 and Cyg X-1, in which the thin disk may exist at ISCO in the low/hard state.


Author(s):  
William J Potter

Abstract The widely used Novikov-Thorne relativistic thin disc equations are only valid down to the radius of the innermost-stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4 − 17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 − 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.


2018 ◽  
Vol 619 ◽  
pp. A95 ◽  
Author(s):  
E. Chiaraluce ◽  
F. Vagnetti ◽  
F. Tombesi ◽  
M. Paolillo

Context. The well established negative correlation between the αOX spectral slope and the optical/ultraviolet (UV) luminosity, a by-product of the relation between X-rays and optical/UV luminosity, is affected by relatively large dispersion. The main contributors to this dispersion can be variability in the X-ray/UV ratio and/or changes in fundamental physical parameters. Aims. We want to quantify the contribution from variability within single sources (intra-source dispersion) and that from variations of other quantities different from source to source (inter-source dispersion). Methods. We use archival data from the XMM-Newton Serendipitous Source Catalog (XMMSSC) and from the XMM-OM Serendipitous Ultraviolet Source Survey (XMMOM-SUSS3). We select a sub-sample in order to decrease the dispersion of the relation due to the presence of radio-loud and broad absorption line objects, and that due to absorptions in both X-ray and optical/UV bands. We use the structure function (SF) to estimate the contribution from variability to the dispersion. We analyse the dependence of the residuals of the relation on various physical parameters in order to characterise the inter-source dispersion. Results. We find a total dispersion of σ ∼ 0.12 and find that intrinsic variability contributes 56% of the variance of the αOX − LUV relation. If we select only sources with a larger number of observational epochs (≥3) the dispersion of the relation decreases by approximately 15%. We find weak but significant dependencies of the residuals of the relation on black-hole mass and on Eddington ratio, which are also confirmed by a multivariate regression analysis of αOX as a function of UV luminosity and black-hole mass and/or Eddington ratio. We find a weak positive correlation of both the αOX index and the residuals of the αOX − LUV relation with inclination indicators, such as the full width at half maximum (Hβ) and the equivalent width (EW)[OIII], suggesting a weak increase of X-ray/UV ratio with the viewing angle. This suggests the development of new viewing angle indicators possibly applicable at higher redshifts. Moreover, our results suggest the possibility of selecting a sample of objects, based on their viewing angle and/or black-hole mass and Eddington ratio, for which the αOX − LUV relation is as tight as possible, in light of the use of the optical/UV – X-ray luminosity relation to build a distance modulus (DM)-z plane and estimate cosmological parameters.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Monimala Mondal ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

AbstractGeodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ($$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.


2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


1998 ◽  
Vol 188 ◽  
pp. 141-144
Author(s):  
K. Iwasawa

X-ray spectroscopy of the broad iron line has revealed some relativistic effects caused by strong gravity about a black hole in active galactic nuclei (AGN). Recent results from ASCA observations of AGNs are reviewed.


2001 ◽  
Vol 205 ◽  
pp. 457-462
Author(s):  
Webster Cash

X-rays have tremendous potential for imaging at the highest angular resulution. The high surface brightness of many x-ray sources will reveal angular scales heretofore thought unreachable. The short wavelengths make instrumentation compact and baselines short. We discuss how practical x-ray interferometers can be built for astronomy using existing technology. We describe the Maxim Pathfinder and Maxim missions which will achieve 100 and 0.1 micro-arcsecond imaging respectively. The science to be tackled with resolution of up to one million times that of HST will be outlined, with emphasis on eventually imaging the event horizon of a black hole.


Author(s):  
Jaroslav Vrba ◽  
Ahmadjon Abdujabbarov ◽  
Arman Tursunov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

Abstract We study spherically symmetric magnetically charged generic black hole solutions of general relativity coupled to non-linear electrodynamics (NED). For characteristic values of the generic spacetime parameters we give the position of horizons in dependence on the charge parameter, demonstrating separation of the black hole and no-horizon solutions, and possibility of existence of solutions containing three horizons. We show that null, weak and strong energy conditions are violated when the outer horizon is approaching the center. We study effective potentials for photons and massive test particles and location of circular photon orbits (CPO) and innermost stable circular orbit (ISCO). We show that the unstable photon orbit can become stable, leading to the possibility of photon capture which affects on silhouette of the central object. The position of ISCO approaches the horizon with increasing charge parameter q and the energy at ISCO decreases with increasing charge parameter. We investigate this phenomenon and summarize for a variety of the generic spacetime parameters the upper estimate on the spin parameter of the Kerr black which can be mimicked by the generic charged black hole solutions.


Sign in / Sign up

Export Citation Format

Share Document