scholarly journals Mapping the missing branch on the neogastropod tree of life: molecular phylogeny of marginelliform gastropods

Author(s):  
Alexander E Fedosov ◽  
Manuel Caballer Gutierrez ◽  
Barbara Buge ◽  
Pavel V Sorokin ◽  
Nicolas Puillandre ◽  
...  

ABSTRACT Marginelliform gastropods are a heterogeneous and diverse group of molluscs encompassing over 1,600 living species, among which are the smallest known neogastropods. The relationships of marginelliform gastropods within the order Neogastropoda are controversial, and the monophyly of the two marginelliform families the Marginellidae J. Fleming, 1828 and the Cystiscidae Stimpson, 1865, remains unconfirmed. DNA sequence data have never been used to assess the relationships of the marginelliform gastropods, making this group the only major branch missing in our current understanding of the neogastropod tree of life. Here we report results of the first multilocus phylogenetic analysis of marginelliform gastropods, which is based on a dataset comprising 63 species (20 genera) of Marginellidae and Cystiscidae, and a wide range of neogastropod lineages. The Marginellidae and Cystiscidae form a moderately supported clade that is sister to the family Volutidae. Marginellona gigas appears to be sister to all other marginelliforms. The subfamily Marginellinae was recovered as a well-supported clade, and good resolution of this part of the tree makes it possible to propose amendments to the family-level classification of the group. The relationship between Granulina and other marginelliforms could not be resolved and requires further study. Due to poor resolution of basal relationships within the Marginellidae–Cystiscidae clade, the monophyly of the Cystiscidae was neither confirmed nor convincingly rejected. The shell morphology of most marginellid and cystiscid genera is taxonomically not very informative but, nevertheless, of the traditionally recognized genera only Gibberula and Dentimargo were shown to be polyphyletic. Although a comprehensive systematic revision of the group requires more extensive taxonomic sampling (e.g. with better representation of the type species of nominal genus-group names), our results support the superfamily Volutoidea, comprising four families (Volutidae, Cystiscidae, Marginellidae and Marginellonidae), with the placement of the Granulinidae uncertain for the time being.

2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


2010 ◽  
Vol 100 (12) ◽  
pp. 1340-1351 ◽  
Author(s):  
Juan Moral ◽  
Concepción Muñoz-Díez ◽  
Nazaret González ◽  
Antonio Trapero ◽  
Themis J. Michailides

Species in the family Botryosphaeriaceae are common pathogens causing fruit rot and dieback of many woody plants. In this study, 150 Botryosphaeriaceae isolates were collected from olive and other hosts in Spain and California. Representative isolates of each type were characterized based on morphological features and comparisons of DNA sequence data of three regions: internal transcribed spacer 5.8S, β-tubulin, and elongation factor. Three main species were identified as Neofusicoccum mediterraneum, causing dieback of branches of olive and pistachio; Diplodia seriata, causing decay of ripe fruit and dieback of olive branches; and Botryosphaeria dothidea, causing dalmatian disease on unripe olive fruit in Spain. Moreover, the sexual stage of this last species was also found attacking olive branches in California. In pathogenicity tests using unripe fruit and branches of olive, D. seriata isolates were the least aggressive on the fruit and branches while N. mediterraneum isolates were the most aggressive on both tissues. Isolates of B. dothidea which cause dalmatian disease on fruit were not pathogenic on branches and only weakly aggressive on fruit. These results, together with the close association between the presence of dalmatian disease symptoms and the wound created by the olive fly (Bactrocera oleae), suggest that the fly is essential for the initiation of the disease on fruit. Isolates recovered from dalmatian disease symptoms had an optimum of 26°C for mycelial growth and 30°C for conidial germination, suggesting that the pathogen is well adapted to high summer temperatures. In contrast, the range of water activity in the medium for growth of dalmatian isolates was 0.93 to 1 MPa, which was similar to that for the majority of fungi. This study resolved long-standing questions of identity and pathogenicity of species within the family Botryosphaeriaceae attacking olive trees in Spain and California.


2016 ◽  
Vol 85 (1) ◽  
pp. 37-65l ◽  
Author(s):  
Dick S.J. Groenenberg ◽  
Peter Subai ◽  
Edmund Gittenberger

A new starting-point in Ariantinae systematics is presented by combining data on traditional shell morphology and genital anatomy, with phylogeny reconstructions based on DNA sequence data. For nearly all genera and subgenera one or more shells are depicted and drawings of the proximal part of the genital organs are shown to illustrate the morphological diversification within the subfamily. For as much as our material allowed it, partial sequences are presented for Histone H3 (H3), Cytochrome c oxidase subunit I (COI), Cytochrome B (CytB) and 16S ribosomal RNA (16S). Some of the allegedly speciose genera like Chilostoma and Campylaea (Zilch, 1960) do not represent monophyletic groups of species, whereas most of the remaining nominal taxa (e.g. Causa, Dinarica, Josephinella, Faustina, Liburnica, Kosicia and Thiessea) warrant a separate taxonomic status indeed. Sequence data from individual markers were informative at the species-level, but not for higherlevel phylogenetics. Insight in genus-level relationships was obtained after concatenation of the individual datasets. The Ariantinae are estimated to have originated during the late Cretaceous (Campanian), not later than ca. 80 million years ago. The enigmatic and morphologically aberrant, monotypic genus Cylindrus is shown as the sister-group of Arianta, a genus including A. arbustorum, which is also unusual in shell-shape and habitat. Ariantopsis and Wladislawia are classified as subgenera of neither Campylaea nor Chilostoma, but Cattania. Sabljaria is considered a subgenus of Dinarica. The nominal genus Superba is shown to be paraphyletic; additional data should demonstrate whether Superba has to be synonymised with Liburnica. The Ariantinae are here divided in 21 genera (2 new) and 13 subgenera (3 new).


Zootaxa ◽  
2017 ◽  
Vol 4353 (3) ◽  
pp. 401 ◽  
Author(s):  
F. GARY STILES ◽  
J. V. JR. REMSEN ◽  
JIMMY A. MCGUIRE

The generic nomenclature of the hummingbirds is unusually complicated. McGuire et al.’s (2014) recent phylogeny of the Trochilidae based on DNA sequence data has greatly clarified relationships within the family but conflicts strongly with the traditional classification of the family at the genus level, especially that of the largest and most recently derived clade, the Trochilini or “emeralds”. We recently presented a historical review of this classification and the generic modifications required by the Code of the International Commission on Zoological Nomenclature. Herein we present a revised generic classification of the Trochilini based upon McGuire et al.’s genetic data, while producing diagnosable generic groupings and preserving nomenclatural stability insofar as possible. However, this generic rearrangement has necessitated the resurrection of nine generic names currently considered synonyms, the synonymization of seven currently recognized genera and the creation of one new genus. The generic changes we recommend to the classification are drastic, and we summarize these in tabular form in comparison with the three most recent classifications of the Trochilini. Where appropriate, we outline alternatives to our proposed arrangement. The classification treats 110 species in 35 genera, including two species that remain unplaced for lack of genetic samples. 


Author(s):  
Todd McLay ◽  
Gareth D. Holmes ◽  
Paul I. Forster ◽  
Susan E. Hoebee ◽  
Denise R. Fernando

The rainforest genus Gossia N.Snow & Guymer (Myrtaceae) occurs in Australia, Melanesia and Malesia, and is capable of hyperaccumulating the heavy metal manganese (Mn). Here, we used nuclear ribosomal and plastid spacer DNA-sequence data to reconstruct the phylogeny of 19 Australian species of Gossia and eight New Caledonian taxa. Our results indicated that the relationship between Gossia and Austromyrtus (Nied.) Burret is not fully resolved, and most Australian species were supported as monophyletic. Non-monophyly might be related to incomplete lineage sorting or inaccurate taxonomic classification. Bark type appears to be a morphological synapomorphy separating two groups of species, with more recently derived lineages having smooth and mottled ‘python’ bark. New Caledonian species were well resolved in a single clade, but were not the first diverging Gossia lineage, calling into doubt the results of a recent study that found Zealandia as the ancestral area of tribe Myrteae. Within Australia, the evolution of multiple clades has probably been driven by well-known biogeographic barriers. Some species with more widespread distributions have been able to cross these barriers by having a wide range of soil-substrate tolerances. Novel Mn-hyperaccumulating species were identified, and, although Mn hyperaccumulation was not strongly correlated with phylogenetic position, there appeared to be some difference in accumulation levels among clades. Our study is the first detailed phylogenetic investigation of Gossia and will serve as a reference for future studies seeking to understand the origin and extent of hyperaccumulation within the Myrteae and Myrtaceae more broadly.


1998 ◽  
Vol 11 (4) ◽  
pp. 631 ◽  
Author(s):  
Barbara G. Briggs

The 1996 Commemorative Proteaceae Conference drew attention to the large body of work proceeding on all southern continents, the extensive and informative fossil record, and the wide range of studies in ecology and reproductive biology. DNA sequence data and organogeny are producing major insights at the upper taxonomic levels, new phylogenetic hypotheses and classifications are emerging in respect of the recognition of subfamilies and the relationships and composition of tribes, and there is also evidence from morphology and DNA sequence data that several genera are paraphyletic.


2010 ◽  
Vol 23 (4) ◽  
pp. 229 ◽  
Author(s):  
Xiaolan He ◽  
David Glenny

The monotypic genus Perssoniella with P. vitreocincta Herzog, endemic to New Caledonia, possesses a series of unique morphological characters and it has been assumed that the genus, assigned to the family Perssoniellaceae and suborder Perssoniellineae, is very isolated but sister to the family Schistochilaceae. The systematic identity of Perssoniella vitreocincta was studied using DNA sequence data for the chloroplast rbcL, rps4 and trnL-F regions. Our analyses placed Perssoniella vitreocincta within the family Schistochilaceae, and within Schistochila itself, with strong support. It suggests that retaining Perssoniella as an independent genus is untenable and we transfer it to the genus Schistochila. Our results indicate that Perssoniella vitreocincta is not an archaic species, as presupposed earlier. The differentiating characters in Perssoniella are mostly probably later derived, rather than ancestral. Our analyses also placed Pachyschistochila and Paraschistochila within Schistochila, again with strong support. We also transfer these two genera to Schistochila.


Botany ◽  
2016 ◽  
Vol 94 (5) ◽  
pp. 359-368 ◽  
Author(s):  
Liang Zhao ◽  
Julien B. Bachelier ◽  
Xiao-hui Zhang ◽  
Yi Ren

The Berberidaceae and the six other families of Ranunculales form a sister clade to all other eudicots, and are crucial to reconstructing the common ancestor of flowering plants. Previous studies have suggested that the petals of most Berberidaceae are derived from stamens, and some are thought to develop petals from common petal/stamen primordia. However, the flower ontogeny is still poorly known in the family and the presence of common primordia needs to be re-evaluated from a comparative developmental perspective. Here, we used scanning electron microscopy to study the floral development of the endemic Chinese species Dysosma versipellis (Hance) M. Cheng ex Ying, which was originally placed in Podophyllum. Our results show that the floral organs are all free and the sepals, petals, and stamens are initiated centripetally in successive and alternate trimerous pairs of whorls around a single carpel. The nectarless petals are initiated separately and do not develop from common primordia with the stamens. Floral and developmental features of D. versipellis are similar to those of most members of Berberidaceae. The regular development of multiple flowers and absence of a secondary increase in the number of stamens in Dysosma support its exclusion from Podophyllum, and this is also inferred by the DNA sequence data.


2020 ◽  
Author(s):  
Zachary H. Griebenow

Abstract.Although molecular data have proven indispensable in confidently resolving the phylogeny of many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA sequence data for leptanilline taxa that are known only from male specimens, including the monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity of undescribed male leptanilline morphospecies, the phylogeny of 35 putative morphospecies sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 discrete male morphological characters using a Bayesian total-evidence framework, with Phaulomyrma represented by morphological data only. Based upon the results of this analysis Phaulomyrma is synonymized with Leptanilla Emery, and male-based diagnoses for Leptanilla that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of that genus. This demonstrates the potential utility of a total-evidence approach in inferring the phylogeny of rare extant taxa for which molecular data are unavailable and begins a long-overdue systematic revision of the Leptanillinae that is focused on male material.


ZooKeys ◽  
2021 ◽  
Vol 1043 ◽  
pp. 1-20
Author(s):  
Manal Al-Kandari ◽  
P. Graham Oliver ◽  
Daniele Salvi

The rocky northern shores of Kuwait and those of the western, inner shores of Kuwait Bay are dominated by a small, densely encrusting oyster. The identity of this oyster has never been confirmed and was mistaken previously for a small Saccostrea. The shell morphology suggests that this species belongs to the subfamily Crassostreinae, but within that subfamily, the presence of marginal erect trumpet-shaped projections is so far unique. Phylogenetic analyses based on mitochondrial DNA sequence data confirmed that this species belongs to the Crassostreinae and has a sister position to the clade including Talonostrea talonata and T. zhanjiangensis. Genetic distance between this species and Talonostrea species is remarkably high, being ~20% for the cytochrome oxidase I gene and ~7% for the 16S rRNA gene. Based on morphological and molecular analyses, this oyster is therefore described here as Talonostrea salpinx Oliver, Salvi & Al-Kandari, sp. nov. Shell morphology is shown to be variable, and the different forms encountered are described. The wider distribution and origins of this species, whether native or introduced, are discussed.


Sign in / Sign up

Export Citation Format

Share Document