scholarly journals Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs

2020 ◽  
Vol 48 (16) ◽  
pp. 8977-8992 ◽  
Author(s):  
Yuji Chikashige ◽  
Hiroaki Kato ◽  
Mackenzie Thornton ◽  
Whitney Pepper ◽  
Madelyn Hilgers ◽  
...  

Abstract The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5′-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as ‘5′-UGA(C/G)GG-3′, are found in 5′ leader regions of regulated genes and shown to be responsible for translational control.

2020 ◽  
Vol 40 (1) ◽  
pp. 51-75 ◽  
Author(s):  
Xin Erica Shu ◽  
Robert V. Swanda ◽  
Shu-Bing Qian

The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.


2020 ◽  
Author(s):  
Agnieszka A. Gorska ◽  
Clara Sandmann ◽  
Eva Riechert ◽  
Christoph Hofmann ◽  
Ellen Malovrh ◽  
...  

AbstractThe mechanistic target of rapamycin (mTOR) is a key regulator of pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective, however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is largely unknown. A cardiomyocyte genome-wide sequencing approach was used to define mTOR-dependent post-transcriptional gene expression control at the level of mRNA translation. This approach identified the muscle-specific protein Cullin-associated NEDD8-dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we found that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell-type-specific targeting of mTOR might have therapeutic value for adverse pathological cardiac remodeling.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Michael Freitag ◽  
Nelima Dighde ◽  
Matthew S Sachs

The Neurospora crmsu arg-2 gene encodes the small subunit of arginine-specific carbamoyl phosphate synthetase. The levels of arg-2 mRNA and mRNA translation are negatively regulated by arginine. An upstream open reading frame (uORF) in the transcript’s 5′ region has been implicated in arginine-specific control. An arg-2-hph fusion gene encoding hygromycin phosphotransferase conferred arginine-regulated resistance to hygromycin when introduced into N. crassa. We used an arg-2-hph strain to select for UV-induced mutants that grew in the presence of hygromycin and arginine, and we isolated 46 mutants that had either of two phenotypes. One phenotype indicated altered expression of both arg-2-hph and urg-2 genes; the other, altered expression of urg-2-hph but not arg-2. One of the latter mutations, which was genetically closely linked to arg-2-hph, was recovered from the 5′ region of the arg-2-hph gene using PCR. Sequence analyses and transformation experiments revealed a mutation at uORF codon 12 (Asp to Asn) that abrogated negative regulation. Examination of the distribution of ribosomes on arg-2-hph transcripts showed that loss of regulation had a translational component, indicating the uORF sequence was important for Arg-specific translational control. Comparisons with other uORFS suggest common elements in translational control mechanisms.


2006 ◽  
Vol 26 (24) ◽  
pp. 9517-9532 ◽  
Author(s):  
Jaime D. Blais ◽  
Christina L. Addison ◽  
Robert Edge ◽  
Theresa Falls ◽  
Huijun Zhao ◽  
...  

ABSTRACT It has been well established that the tumor microenvironment can promote tumor cell adaptation and survival. However, the mechanisms that influence malignant progression have not been clearly elucidated. We have previously demonstrated that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR). Here, we show that tumors derived from K-Ras-transformed Perk−/− mouse embryonic fibroblasts (MEFs) are smaller and exhibit less angiogenesis than tumors with an intact ISR. Furthermore, Perk promotes a tumor microenvironment that favors the formation of functional microvessels. These observations were corroborated by a microarray analysis of polysome-bound RNA in aerobic and hypoxic Perk+/+ and Perk−/− MEFs. This analysis revealed that a subset of proangiogenic transcripts is preferentially translated in a Perk-dependent manner; these transcripts include VCIP, an adhesion molecule that promotes cellular adhesion, integrin binding, and capillary morphogenesis. Taken with the concomitant Perk-dependent translational induction of additional proangiogenic genes identified by our microarray analysis, this study suggests that Perk plays a role in tumor cell adaptation to hypoxic stress by regulating the translation of angiogenic factors necessary for the development of functional microvessels and further supports the contention that the Perk pathway could be an attractive target for novel antitumor modalities.


2013 ◽  
Vol 42 (5) ◽  
pp. 3298-3313 ◽  
Author(s):  
Anastasiia Kamenska ◽  
Wei-Ting Lu ◽  
Dorota Kubacka ◽  
Helen Broomhead ◽  
Nicola Minshall ◽  
...  

Abstract A key player in translation initiation is eIF4E, the mRNA 5′ cap-binding protein. 4E-Transporter (4E-T) is a recently characterized eIF4E-binding protein, which regulates specific mRNAs in several developmental model systems. Here, we first investigated the role of its enrichment in P-bodies and eIF4E-binding in translational regulation in mammalian cells. Identification of the conserved C-terminal sequences that target 4E-T to P-bodies was enabled by comparison of vertebrate proteins with homologues in Drosophila (Cup and CG32016) and Caenorhabditis elegans by sequence and cellular distribution. In tether function assays, 4E-T represses bound mRNA translation, in a manner independent of these localization sequences, or of endogenous P-bodies. Quantitative polymerase chain reaction and northern blot analysis verified that bound mRNA remained intact and polyadenylated. Ectopic 4E-T reduces translation globally in a manner dependent on eIF4E binding its consensus Y30X4Lϕ site. In contrast, tethered 4E-T continued to repress translation when eIF4E-binding was prevented by mutagenesis of YX4Lϕ, and modestly enhanced the decay of bound mRNA, compared with wild-type 4E-T, mediated by increased binding of CNOT1/7 deadenylase subunits. As depleting 4E-T from HeLa cells increased steady-state translation, in part due to relief of microRNA-mediated silencing, this work demonstrates the conserved yet unconventional mechanism of 4E-T silencing of particular subsets of mRNAs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasuko Matsuki ◽  
Yoshitaka Matsuo ◽  
Yu Nakano ◽  
Shintaro Iwasaki ◽  
Hideyuki Yoko ◽  
...  

AbstracteIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.


2020 ◽  
Vol 21 (5) ◽  
pp. 1592
Author(s):  
Han Kyoung Choe ◽  
Jun Cho

Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.


2019 ◽  
Vol 20 (5) ◽  
pp. 1226 ◽  
Author(s):  
Nicole Dalla Venezia ◽  
Anne Vincent ◽  
Virginie Marcel ◽  
Frédéric Catez ◽  
Jean-Jacques Diaz

Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of “specialized ribosomes”, which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2658-2658
Author(s):  
Klaske A.M.H. Thiadens ◽  
Eleonora de Klerk ◽  
Ivo F.A.C. Fokkema ◽  
Peter A.C. ‘t Hoen ◽  
Marieke von Lindern

Abstract The erythroid progenitor compartment possesses a large expansion capacity, both in vivo and in vitro, which enables a rapid restoration of peripheral erythrocytes following severe blood loss. This expansion is tightly regulated to maintain erythrocyte numbers between narrow boundaries, and to balance expansion of the erythroid compartment against the availability of iron for heme and haemoglobin production. We previously observed that control of mRNA translation is crucial for expansion of the erythroid compartment. We also showed that translation of specific transcripts is impaired in Diamond Blackfan Anemia (DBA), a severe congenital anemia due to defective ribosome biosynthesis. Transcripts can be subject to translational control through domains in the 5’- or 3’UTR, including secondary structures, protein binding sequences and upstream open reading frames (uORFs). The presence of uORFs, including those starting at non-AUG codons in the 5’UTR, may alter the level of mRNA translation, but may also result in the expression of alternative protein isoforms because translation initiation may be redirected to more downstream start codons. The aim of our current studies is to provide a genome wide map of mRNA translation efficiency during erythropoiesis that can be used to investigate defective mRNA translation in, for instance, DBA. Ribosome profiling is a genome wide high-throughput sequencing technology for global mapping of translation initiation sites that allows translation analysis with codon resolution at the genome wide level. We first investigated translational changes occurring during differentiation of mouse erythroblasts. We used p53-deficient, growth factor dependent and differentiation competent immortalized erythroblast cultures that were expanded in presence of erythropoietin (Epo), stem cell factor (SCF) and glucocorticoids as T0, and subsequently differentiated the cells in presence of Epo for 17 and 46 hours (T17, and T46 samples). To obtain ribosome footprints, the cells were treated for 7 minutes with harringtonin or solvent, and subsequently for 5 minutes with cycloheximide, which arrests translation by stabilizing the ribosomes at translation initiation codons, or on all codons, respectively. We used optimized protocols for ribosome footprinting and data analysis, and focused the analysis on transcripts containing uORFs. First we performed a qualitative analysis of start codon usage. The ribosome footprint data proved to be superior to previously used polyribosome recruitment. In some cases polysome recruitment appeared to represent translation of an uORFs while the protein coding ORF is hardly translated (e.g. Csf2rb2, Puma). In another set of transcripts, we found uORFs that are differentially translated during differentiation, and thereby regulate differential translation from a downstream start codon (e.g. Klf3, Use1, CD47, Kell). Finally, comparison of ribosome footprints determined in erythroblasts and in myoblasts/myotubes revealed tissue specific translation regulation of otherwise ubiquitously expressed transcripts among which transcripts encoding ribosomal proteins. Second, we will perform quantitative analysis of mRNA translation in erythropoiesis through the comparison of ribosome footprint reads in an ORF with total mRNA reads obtained from total mRNA sequencing of the same sample. The obtained insight in transcript specific translation at codon resolution is of great value to understand many cellular processes during erythropoiesis, and will be of particular interest to understand responses to iron availability and reactive oxygen species that particularly affect translation of transcripts harboring uORFs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Yasuko Matsuki ◽  
Yoshitaka Matsuo ◽  
Yu Nakano ◽  
Shintaro Iwasaki ◽  
Hideyuki Yoko ◽  
...  

ABSTRACTeIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.


Sign in / Sign up

Export Citation Format

Share Document