scholarly journals Synthetic lethality between BRCA1 deficiency and poly(ADP-ribose) polymerase inhibition is modulated by processing of endogenous oxidative DNA damage

2019 ◽  
Vol 47 (17) ◽  
pp. 9132-9143 ◽  
Author(s):  
Sara Giovannini ◽  
Marie-Christine Weller ◽  
Simone Repmann ◽  
Holger Moch ◽  
Josef Jiricny

Abstract Poly(ADP-ribose) polymerases (PARPs) facilitate the repair of DNA single-strand breaks (SSBs). When PARPs are inhibited, unrepaired SSBs colliding with replication forks give rise to cytotoxic double-strand breaks. These are normally rescued by homologous recombination (HR), but, in cells with suboptimal HR, PARP inhibition leads to genomic instability and cell death, a phenomenon currently exploited in the therapy of ovarian cancers in BRCA1/2 mutation carriers. In spite of their promise, resistance to PARP inhibitors (PARPis) has already emerged. In order to identify the possible underlying causes of the resistance, we set out to identify the endogenous source of DNA damage that activates PARPs. We argued that if the toxicity of PARPis is indeed caused by unrepaired SSBs, these breaks must arise spontaneously, because PARPis are used as single agents. We now show that a significant contributor to PARPi toxicity is oxygen metabolism. While BRCA1-depleted or -mutated cells were hypersensitive to the clinically approved PARPi olaparib, its toxicity was significantly attenuated by depletion of OGG1 or MYH DNA glycosylases, as well as by treatment with reactive oxygen species scavengers, growth under hypoxic conditions or chemical OGG1 inhibition. Thus, clinical resistance to PARPi therapy may emerge simply through reduced efficiency of oxidative damage repair.

2001 ◽  
Vol 21 (21) ◽  
pp. 7191-7198 ◽  
Author(s):  
John R. Vance ◽  
Thomas E. Wilson

ABSTRACT In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3′-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3′ phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3′ processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3′ phosphates at strand breaks and does not possess more general 3′ phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion ofTPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3′ phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3′-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.


2021 ◽  
Author(s):  
Umar Khalid ◽  
Milena Simovic ◽  
Murat Iskar ◽  
John KL Wong ◽  
Rithu Kumar ◽  
...  

ABSTRACTChromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Laura Narciso ◽  
Eleonora Parlanti ◽  
Mauro Racaniello ◽  
Valeria Simonelli ◽  
Alessio Cardinale ◽  
...  

There is a growing body of evidence indicating that the mechanisms that control genome stability are of key importance in the development and function of the nervous system. The major threat for neurons is oxidative DNA damage, which is repaired by the base excision repair (BER) pathway. Functional mutations of enzymes that are involved in the processing of single-strand breaks (SSB) that are generated during BER have been causally associated with syndromes that present important neurological alterations and cognitive decline. In this review, the plasticity of BER during neurogenesis and the importance of an efficient BER for correct brain function will be specifically addressed paying particular attention to the brain region and neuron-selectivity in SSB repair-associated neurological syndromes and age-related neurodegenerative diseases.


Author(s):  
Timothy A. Yap ◽  
Ruth Plummer ◽  
Nilofer S. Azad ◽  
Thomas Helleday

Cancer-specific DNA repair defects are abundant in malignant tissue and present an opportunity to capitalize on these aberrations for therapeutic benefit. Early preclinical data demonstrated the concept of synthetic lethality between BRCA genetic defects and pharmacologic PARP inhibition, suggesting that there may be monotherapy activity with this class of agents and supporting the early trial testing of this molecularly driven approach. Although the first foray into the clinic for PARP inhibitors was in combination with DNA-damaging cytotoxic agents, clinical development was limited by the more-than-additive toxicity, in particular dose-limiting myelosuppression. As more tolerable single agents, PARP inhibitors are now approved for the treatment of ovarian cancer in different settings and BRCA-mutant breast cancers. Beyond PARP inhibitors, there is now a large armamentarium of potent and relatively selective inhibitors in clinical trial testing against key targets involved in the DNA damage response (DDR), including ATR, ATM, CHK1/2, WEE1, and DNA-PK. These agents are being developed for patients with molecularly selected tumors and in rational combinations with other molecularly targeted agents and immune checkpoint inhibitors. We detail the clinical progress made in the development of PARP inhibitors, review rational combinations, and discuss the development of emerging inhibitors against novel DDR targets, including DNA repair proteins, DNA damage signaling, and DNA metabolism.


Author(s):  
Yali Wang ◽  
Kun Zheng ◽  
Yongbiao Huang ◽  
Hua Xiong ◽  
Jinfang Su ◽  
...  

AbstractDefects in the DNA damage response (DDR) can lead to genome instability, producing mutations or aberrations that promote the development and progression of cancer. But it also confers such cells vulnerable to cell death when they inhibit DNA damage repair. Poly (ADP-ribose) polymerase (PARP) plays a central role in many cellular processes, including DNA repair, replication, and transcription. PARP induces the occurrence of poly (ADP-ribosylation) (PARylation) when DNA single strand breaks (SSB) occur. PARP and various proteins can interact directly or indirectly through PARylation to regulate DNA repair. Inhibitors that directly target PARP have been found to block the SSB repair pathway, triggering homologous recombination deficiency (HRD) cancers to form synthetic lethal concepts that represent an anticancer strategy. It has therefore been investigated in many cancer types for more effective anti-cancer strategies, including gastric cancer (GC). This review describes the antitumor mechanisms of PARP inhibitors (PARPis), and the preclinical and clinical progress of PARPis as monotherapy and combination therapy in GC.


2020 ◽  
Vol 48 (9) ◽  
pp. 4928-4939 ◽  
Author(s):  
Sara Giovannini ◽  
Marie-Christine Weller ◽  
Hana Hanzlíková ◽  
Tetsuya Shiota ◽  
Shunichi Takeda ◽  
...  

Abstract Replication factor C (RFC), a heteropentamer of RFC1-5, loads PCNA onto DNA during replication and repair. Once DNA synthesis has ceased, PCNA must be unloaded. Recent findings assign the uloader role primarily to an RFC-like (RLC) complex, in which the largest RFC subunit, RFC1, has been replaced with ATAD5 (ELG1 in Saccharomyces cerevisiae). ATAD5-RLC appears to be indispensable, given that Atad5 knock-out leads to embryonic lethality. In order to learn how the retention of PCNA on DNA might interfere with normal DNA metabolism, we studied the response of ATAD5-depleted cells to several genotoxic agents. We show that ATAD5 deficiency leads to hypersensitivity to methyl methanesulphonate (MMS), camptothecin (CPT) and mitomycin C (MMC), agents that hinder the progression of replication forks. We further show that ATAD5-depleted cells are sensitive to poly(ADP)ribose polymerase (PARP) inhibitors and that the processing of spontaneous oxidative DNA damage contributes towards this sensitivity. We posit that PCNA molecules trapped on DNA interfere with the correct metabolism of arrested replication forks, phenotype reminiscent of defective homologous recombination (HR). As Atad5 heterozygous mice are cancer-prone and as ATAD5 mutations have been identified in breast and endometrial cancers, our finding may open a path towards the therapy of these tumours.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3909-3909 ◽  
Author(s):  
Namrata S Chandhok ◽  
Wei Wei ◽  
Ranjit Bindra ◽  
Stephanie Halene ◽  
Yu Shyr ◽  
...  

Background: Recurring mutations have been identified in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) which translate to therapeutic targets. Isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations occur in ~20% of AML, and up to 12% of patients with MDS. Three conserved mutational hotspots in the IDH enzymes alter their function and lead to the production of (R)-2-hydroxyglutarate (2HG), an oncometabolite with numerous downstream effects, including impaired DNA damage repair. Specifically, homologous recombination (HR) is impaired by inhibiting the function of histone demethylases that are critical for HR and recruitment of the HR machinery to sites of DNA damage. In HR deficient tumors poly-ADP ribose polymerase (PARP) enzymes mediate a key salvage pathway. PARP inhibition in HR deficient tumors leads to synthetic lethality via simultaneous inhibition of HR and SSB mediated DNA repair. Our group previously demonstrated synthetic lethality with PARP inhibition in IDH mutant cells lines, and other IDH mutant models including primary patient-derived cell lines and genetically-matched tumor xenografts. Study Design and Methods: The PRIME trial (NCI10264) is a proof of concept, biomarker-driven, multi-institution, phase II open label clinical trial to assess the overall response of IDH1/2 mutant relapsed/refractory AML and MDS to PARP inhibitor monotherapy with olaparib. The clinical trial is executed by the Experimental Therapeutics Clinical Trials Network of the NCI. The Cancer Therapy Evaluation Program will provide olaparib. Eligibility criteria include documented IDH1 or IDH2 mutation in blood or bone marrow within 30 days of enrollment based on mutational testing by PCR or sequencing in a CLIA certified laboratory and willingness to undergo a bone marrow biopsy. Patients will be treated with olaparib 300 mg q12hrs each day of a 28-day cycle, using a tablet formulation, until disease progression, unacceptable toxicity, withdrawal of consent or death. Blood and bone marrow samples for 2-HG analysis will be collected prior to starting therapy and after 1 cycle (28 days), cycle 2, 3, 6, 9, 12 or when there is concern for disease progression (Figure 1). A Simon two-stage optimal design will be used to test the null (ORR=10%) versus the alternative hypothesis (ORR=40%) in each arm. In the first stage, 9 patients will be accrued in each arm. If one or fewer responses are observed in these 9 patients, that arm will be stopped early for futility. Otherwise, 11 additional patients will be accrued for a total of 18 in each arm. We reject the null hypothesis if at least 5 responses are observed in these 20 patients. In each arm, we have approximately 90% power to detect a 30% increase in ORR at a one-sided type I error rate of 0.05. Primary endpoint: Overall response rate (ORR) of 40%, i.e., a 30% ORR improvement (40% vs. historical control ORR = 10%) based on MDS International Working Group 2006 criteria and AML MDS International Working Group 2003 criteria after 6 cycles of treatment. Cumulative ORR will include complete remission, complete remission with incomplete blood count recovery, partial response, and bone marrow complete remission. Secondary endpoints: Progression-free survival (the interval between the time of initiation of olaparib to the time of documentation of olaparib failure or last follow-up) and overall survival (the interval between the time of initiation of olaparib to the time of death or last follow-up) for the trial. Exploratory studies: The PRIME trial will also test the utility of 2-HG and DNA damage markers such as γ-H2AX as potential biomarkers of response to olaparib. Using multiple viability assays on leukemia cell lines and bone marrow cultures we will assess synergistic therapeutic combinations to further improve outcomes in this patient population. To confirm efficacy in vivo without undue toxicity, promising combination therapies will be confirmed in cytokine-humanized immunodeficient "MISTRG" mice. We will also examine the impact of PARP inhibitors on the genomic, proteomic, metabolomic and immunologic landscape of IDH 1/2-mutant hematologic malignancies using DNA whole exome sequencing (WES), RNA-Seq, and liquid chromatography-mass spectrometry assessment of oncometabolites. Disclosures Bindra: Cybrexa: Consultancy, Equity Ownership. Prebet:pfizer: Honoraria; pfizer: Honoraria; pfizer: Honoraria; Boehringer Ingelheim: Research Funding; pfizer: Honoraria; Tetraphase: Consultancy; novartis: Honoraria; novartis: Honoraria; Genentech: Consultancy; Boehringer Ingelheim: Research Funding; novartis: Honoraria; Boehringer Ingelheim: Research Funding; Agios: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; pfizer: Honoraria; novartis: Honoraria; Bristol-Myers Squibb: Honoraria, Research Funding; novartis: Honoraria. OffLabel Disclosure: We will be using PARP inhibitors as a novel therapy for patients with relapsed or refractory AML and high risk MDS based on preclinical data.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14715-e14715
Author(s):  
Manal Mehibel ◽  
Jimmy Xu ◽  
Anh Diep ◽  
Kaushik Thakkar ◽  
Caiyun G Li ◽  
...  

e14715 Background: PARP inhibitors (PARPi) have demonstrated activity in HR deficient tumors through synthetic lethality. However, their clinical efficacy has not been highly promising, with response rates ranging between 30-60% for Olaparib, Talazoparib and Veliparib (1). This highlights the necessity to understand the mechanisms of resistance and how these agents work in the context of the tumor microenvironment. In this study, we explore the effect of hypoxia on the efficacy of PARPi in a range of HR-deficient tumors. Hypoxia is known to downregulate genes of homologous recombination (2) but its role in HR deficiency in still unknown. Methods: HR deficient tumor cell lines were treated with PARPi under both aerobic and hypoxic conditions. DNA damage markers such as γH2AX, 53BP1 and RIF1 were detected by immunofluorescence. Tumor xenografts were grown to 100 mm3 prior to treatment with vehicle, PARPi, hypoxia activated cytotoxin, or the combination and tumor volumes were measured. Co-localization of apoptosis and hypoxia was detected by IHC. Finally, hypoxic signature in breast PDX models was correlated with their sensitivity to PARPi. Results: We found that hypoxic cells are significantly more resistant to PARPi in cell culture models. Efficiency of inhibition of PARP activity by these agents was similar under both air and hypoxia. The DNA damage marker γH2AX increased in cells treated in air, but not under hypoxia. There was no loss of 53BP1 protein that regulate engagement of the c-NHEJ pathway, indicating that HR has not been restored in these cells (3). However, it’s binding partner RIF1 was lost in hypoxia upon treatment indicating deficient signaling downstream of 53BP1. RIF1 is known to inhibit 5’ resection and its loss leads to resistance to PARPi in BRCA-deficient cells (4). In vivo, combining PARPi with hypoxia activated prodrugs led to substantial tumor growth delay in three xenograft models. DNA damage and apoptosis in these tumors was only detected outside of hypoxic regions positive for pimonidazole. In the breast PDX models, there was a strong correlation between the level of hypoxia in these tumors and their sensitivity to Olaparib. Conclusions: The significant increase in anti-tumor effects with the combination of PARPi and hypoxia-targeting cytotoxins leads us to propose a new strategy for tumors which are not responsive to PARPi alone. 1. Brown JS et al. Br J cancer 2016, 114, 713-5 2. Chan N et al. Cancer Res 2010, 70,8045-54 3. Bunting SF et al. Cell 2010, 141, 243-54 4. Chapman JR et al. Mol Cell 2013, 49, 858-71.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Li ◽  
Yuantao Wang ◽  
Wanpeng Zhang ◽  
Xinchen Wang ◽  
Lu Chen ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors offer a significant clinical benefit for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, the narrow clinical indication limits the development of PARP inhibitors. Phosphoinositide 3-kinase (PI3K) inhibition sensitizes BRCA-proficient TNBC to PARP inhibition, which broadens the indication of PARP inhibitors. Previously researches have reported that PI3K inhibition induced the defect of homologous recombination (HR) mediated repair by downregulating the expression of BRCA1/2 and Rad51. However, the mechanism for their synergistic effects in the treatment of TNBC is still unclear. Herein, we focused on DNA damage, DNA single-strand breaks (SSBs) repair and DNA double-strand breaks (DSBs) repair three aspects to investigate the mechanism of dual PI3K and PARP inhibition in DNA damage response. We found that dual PI3K and PARP inhibition with BKM120 and olaparib significantly reduced the proliferation of BRCA-proficient TNBC cell lines MDA-MB-231 and MDA231-LM2. BKM120 increased cellular ROS to cause DNA oxidative damage. Olaparib resulted in concomitant gain of PARP1, forkhead box M1 (FOXM1) and Exonuclease 1 (Exo1) while inhibited the activity of PARP. BKM120 downregulated the expression of PARP1 and PARP2 to assist olaparib in blocking PARP mediated repair of DNA SSBs. Meanwhile, BKM120 inhibited the expression of BRAC1/2 and Rad51/52 to block HR mediated repair through the PI3K/Akt/NFκB/c-Myc signaling pathway and PI3K/Akt/ FOXM1/Exo1 signaling pathway. BKM120 induced HR deficiency expanded the application of olaparib to HR proficient TNBCs. Our findings proved that PI3K inhibition impaired the repair of both DNA SSBs and DNA DSBs. FOXM1 and Exo1 are novel therapeutic targets that serves important roles in DNA damage response.


Sign in / Sign up

Export Citation Format

Share Document