scholarly journals HIF-transcribed p53 chaperones HIF-1α

2019 ◽  
Vol 47 (19) ◽  
pp. 10212-10234 ◽  
Author(s):  
Esha Madan ◽  
Taylor M Parker ◽  
Christopher J Pelham ◽  
Antonio M Palma ◽  
Maria L Peixoto ◽  
...  

Abstract Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.

2011 ◽  
Vol 39 (1) ◽  
pp. 263-268 ◽  
Author(s):  
Colin Lockwood ◽  
Julea N. Butt ◽  
Thomas A. Clarke ◽  
David J. Richardson

The cytochrome c nitrite reductase NrfA is a 53 kDa pentahaem enzyme that crystallizes as a decahaem homodimer. NrfA catalyses the reduction of NO2− to NH4+ through a six electron reduction pathway that is of major physiological significance to the anaerobic metabolism of enteric and sulfate reducing bacteria. NrfA receives electrons from the 21 kDa pentahaem NrfB donor protein. This requires that redox complexes form between the NrfA and NrfB pentahaem cytochromes. The formation of these complexes can be monitored using a range of methodologies for studying protein–protein interactions, including dynamic light scattering, gel filtration, analytical ultracentrifugation and visible spectroscopy. These methods have been used to show that oxidized NrfA exists in dynamic monomer–dimer equilibrium with a Kd (dissociation constant) of 4 μM. Significantly, the monomeric and dimeric forms of NrfA are equally active for either the six electron reduction of NO2− or HSO3−. When mixed together, NrfA and NrfB exist in equilibrium with NrfAB, which is described by a Kd of 50 nM. Thus, since NrfA and NrfB are present in micromolar concentrations in the periplasmic compartment, it is likely that NrfB remains tightly associated with its NrfA redox partner under physiological conditions.


Author(s):  
Tibor Magyar ◽  
Tamás Árpádffy-Lovas ◽  
Bence József Pászti ◽  
Noémi Tóth ◽  
Jozefina Szlovák ◽  
...  

Introduction: Activation of the parasympathetic nervous system has been reported to have an antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to modulate the ATP-dependent K-current (IK-ATP), a crucial current activated during hypoxia. However, the possible significance of this current modulation in the antiarrhythmic mechanism is not fully clarified. Methods: Action potentials were measured using the conventional microelectrode technique from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of the patch clamp method. Results: 5 μM acetylcholine did not influence the action potential duration (APD) either in Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the APD and suppressed the Purkinje–ventricle APD dispersion when it was administered after 5 μM pinacidil application. 3 μM carbachol reduced the pinacidil-activated IK-ATP under voltage-clamp condition. Acetylcholine lengthened the ventricular action potential under simulated ischemia condition. Conclusion: In this study we found that acetylcholine inhibits the IK-ATP and thus suppresses the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Eline K. van den Akker ◽  
Frank J. M. F. Dor ◽  
Jan N. M. IJzermans ◽  
Ron W. F. de Bruin

Since the discovery of microRNAs, ample research has been conducted to elucidate their involvement in an array of (patho)physiological conditions. Ischemia reperfusion injury is a major problem in kidney transplantation and its mechanism is still not fully known, nor is there an effective therapy. Furthermore, no biomarker is available to specifically measure (ischemic) damage after kidney transplantation or predict transplantation outcome. In this review, we summarize studies conducted on microRNAs in renal ischemia reperfusion injury and kidney transplantation. Although the number of publications on miRNAs in different areas of nephrology is increasing every year, only a limited number of reports that address the role of miRNAs in relation to ischemia reperfusion injury or kidney transplantation are available. All reports up to June 2014 on microRNAs in renal IRI, kidney transplantation, and renal allograft status were included. Design of the studies was highly variable and there was limited overlap between microRNAs found in these reports. No single microRNA expression pattern could be found, although multiple microRNAs involved in the immune response seem to be altered after ischemia reperfusion injury and kidney transplantation. Although there is a growing interest in microRNA research in kidney transplantation aiming to identify biomarkers and therapeutical targets, to date, no specific microRNA has been demonstrated to be applicable as either one, mostly because of lack of specificity. More systematical research is needed to determine whether microRNAs can be applied as biomarker, therapeutic target, or therapeutic agent in kidney transplantation.


2008 ◽  
Vol 295 (6) ◽  
pp. F1666-F1677 ◽  
Author(s):  
Timothy A. Sutton ◽  
Jared Wilkinson ◽  
Henry E. Mang ◽  
Nicole L. Knipe ◽  
Zoya Plotkin ◽  
...  

Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) and is characterized by widespread tubular and microvascular damage. The tumor suppressor p53 is upregulated after IRI and contributes to renal injury in part by promoting apoptosis. Acute, short-term inhibition of p53 with pifithrin-α conveys significant protection after IRI. The hypoxia-inducible factor-1 (HIF-1) pathway is also activated after IRI and has opposing effects to those promoted by p53. The balance between the HIF-1 and p53 responses can determine the outcome of IRI. In this manuscript, we investigate whether p53 regulates the HIF-1 pathway in a rodent model of IRI. HIF-1α is principally expressed in the collecting tubules (CT) and thick ascending limbs (TAL) under physiological conditions. However, inhibition of p53 with pifithrin-α increases the faint expression of HIF-1α in proximal tubules (PT) under physiological conditions. Twenty-four hours after IRI, HIF-1α expression is decreased in both CT and TAL. HIF-1α expression in the PT is not significantly altered after IRI. Acute inhibition of p53 significantly increases HIF-1α expression in the PT after IRI. Additionally, pifithrin-α prevents the IRI-induced decrease in HIF-1α in the CT and TAL. Parallel changes are observed in the HIF-1α transcriptive target, carbonic anhydrase-9. Finally, inhibition of p53 prevents the dramatic changes in Von Hippel-Lindau protein morphology and expression after IRI. We conclude that activation of p53 after IRI mitigates the concomitant activation of the protective HIF-1 pathway. Modulating the interactions between the p53 and HIF-1 pathway can provide novel options in the treatment of AKI.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1317
Author(s):  
Sigalit Sukenik ◽  
Ilana Braunstein ◽  
Ariel Stanhill

Maintaining 26S proteasome activity under diverse physiological conditions is a fundamental requirement in order to maintain cellular proteostasis. Several quantitative and qualitative mechanisms have evolved to ensure that ubiquitin–proteasome system (UPS) substrates do not accumulate and lead to promiscuous protein–protein interactions that, in turn, lead to cellular malfunction. In this report, we demonstrate that Arsenite Inducible Regulatory Particle-Associate Protein (AIRAP), previously reported as a proteasomal adaptor required for maintaining proteasomal flux during arsenite exposure, can directly bind arsenite molecules. We further show that arsenite inhibits Psmd14/Rpn11 metalloprotease deubiquitination activity by substituting zinc binding to the MPN/JAMM domain. The proteasomal adaptor AIRAP is able to directly relieve PSMD14/Rpn11 inhibition. A possible metal relay between arsenylated PSMD14/Rpn11 and AIRAP may serve as a cellular mechanism that senses proteasomal inhibition to restore Psmd14/Rpn11 activity.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaoyi Tan ◽  
Hai Chen ◽  
Chunkai Gu ◽  
Jiachen Zang ◽  
Tuo Zhang ◽  
...  

Abstract Histidine (His) residues represent versatile motifs for designing protein-protein interactions because the protonation state of the imidazole group of His is the only moiety in protein to be significantly pH dependent under physiological conditions. Here we show that, by the designed His motifs nearby the C4 axes, ferritin nanocages arrange in crystals with a simple cubic stacking pattern. The X-ray crystal structures obtained at pH 4.0, 7.0, and 9.0 in conjunction with thermostability analyses reveal the strength of the π–π interactions between two adjacent protein nanocages can be fine-tuned by pH. By using the crystal structural information as a guide, we constructed 3D protein frameworks in solution by a combination of the relatively weak His–His interaction and Ni2+-participated metal coordination with Glu residues from two adjacent protein nanocages. These findings open up a new way of organizing protein building blocks into 3D protein crystalline frameworks.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammad Ghasem Golmohammadi ◽  
Shokofeh Banaei ◽  
Kazem Nejati ◽  
Mir Mehdi Chinifroush-Asl

AbstractKidney ischemia reperfusion (IR) contributes to the development of acute kidney injury. The hypoxic conditions in ischemic damage lead to oxidative stress and apoptotic cell death. We investigated the effects of vitamin D3 (Vit D) and erythropoietin (EPO) on microRNA-21(miR-21) expression in renal IR. Wistar rats were divided into five groups including the control, vehicle + IR, Vit D + IR, EPO + IR, and Vit D + EPO + IR groups. The animals were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. Vitamin D3 and EPO were administered prior to ischemia. After 24 h reperfusion, the kidney samples were collected for the detection of miR-21, heat shock protein 70 (hsp70) and caspase-3 expression levels. Kidney IR significantly increased the expression of miR-21, hsp70 and capase-3 and blood urea nitrogen (BUN)-Cr levels. Treatment with vitamin D3 and EPO significantly decreased the BUN-Cr levels and hsp70 and caspase-3 expression. Also, the co-administration of two drugs significantly increased miR-21 expression. It seems that vitamin D3 or EPO administration could protect the kidney against IR injury. However, vitamin D3 and EPO co-treatment was the most effective compared with the other treatment groups.


2012 ◽  
Vol 27 ◽  
pp. 433-440 ◽  
Author(s):  
Elena Chikhirzhina ◽  
Tatyana Starkova ◽  
Elena Kostyleva ◽  
Alexander Polyanichko

The interaction of the linker histone H1Z from the sperm chromatin of starfishAsterias amurensiswith DNA was studied by spectroscopic and thermodynamic approaches. It has been shown that at the physiological conditions the interaction of the H1Z with DNA results in more compact structures compared to complexes of DNA with somatic histone H1. The typical profile of the DNA melting curves reveals two peaks attributed to the bound and unbound DNA. It has been shown that H1Z from starfish sperm stabilizes DNA to a greater extent compared to the somatic H1. It is possible that the presence of the additionalα—helical segments within the C-terminal part of the H1Z typical for the linker histones from echinoderm sperm facilitates the protein-protein interactions which in turn stimulate cooperative binding of the histones to DNA, resulting in the formation of the supercompact sperm chromatin.


2021 ◽  
Vol 22 (16) ◽  
pp. 8446
Author(s):  
Larissa Ho Ching Tang ◽  
Frederic Khe Cheong Fung ◽  
Angela Ka Wai Lai ◽  
Ian Yat Hin Wong ◽  
Kendrick Co Shih ◽  
...  

The cytoprotective versus cytotoxic role of macroautophagy in ocular ischemia/reperfusion injuries remains controversial and its effects under hyperglycemia are unclear. We investigated the involvement of autophagy in in vitro and in vivo normoglycemic and hyperglycemic models of retinal ischemia/reperfusion injury. Retinal ischemia (2 h) and reperfusion (2 or 22 h) was induced in wild-type and type I diabetic Ins2Akita/+ mice using a middle cerebral artery occlusion model. R28 retinal precursor cells were subjected to CoCl2-induced hypoxia with or without autophagic inhibitor NH4Cl. Autophagic regulation during ischemia/reperfusion was assessed through immunohistochemical detection and Western blotting of microtubule-associated protein 1A/1B-light chain 3 (LC3) and lysosomal associated membrane protein 1 (LAMP1). Effect of autophagic inhibition on cell viability and morphology under hypoxic conditions was also evaluated. Upregulation of autophagic markers in the inner retinae was seen after two hours reperfusion, with tapering of the response following 22 h of reperfusion in vivo. LC3-II turnover assays confirmed an increase in autophagic flux in our hypoxic in vitro model. Pharmacological autophagic inhibition under hypoxic conditions decreased cell survival and induced structural changes not demonstrated with autophagic inhibition alone. Yet no statistically significant different autophagic responses in ischemia/reperfusion injuries were seen between the two glycemic states.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hirofumi Terada ◽  
Naoyuki Hirata ◽  
Yasuaki Sawashita ◽  
Sho Ohno ◽  
Yusuke Yoshikawa ◽  
...  

Background. Chronic and/or intermittent exposure to hypobaric hypoxia reportedly exerts cardioprotective effects against ischemia-reperfusion injury. However, few studies have focused on the cardioprotective effects of acute and/or short-term hypobaric and hypoxic exposures. This study investigated the effects of acute hypobaric hypoxia on myocardial ischemia-reperfusion injury. Materials and Methods. Rats were assigned to groups receiving normobaric normoxia (NN group), hypobaric hypoxia (HH group), or normobaric hypoxia (NH group). HH group rats were exposed to 60.8 kPa and 12.6% fraction of inspired oxygen in a hypobaric chamber for 6 h. NH group rats were exposed to hypoxic conditions under normal pressure. After each exposure, 30 min of myocardial ischemia was followed by 60 min of reperfusion. Cardiac function and infarct size were determined after reperfusion. Expression of hypoxia-inducible factor 1 alpha (HIF1α) was also measured. Results. Cardiac function was better preserved in the HH and NH groups than in the NN group ( p  < 0.01 each). Median infarct size/area at risk was significantly lower in the HH group (50%, interquartile range [IQR] 48–54%; p  < 0.01 vs. NN group) and NH group (45%, IQR 36–50%; p  < 0.01 vs. NN group) than in the NN group (72%, IQR 69–75%). HIF1α expression was significantly higher in the HH group ( p  < 0.05 vs. NN group) and NH group ( p  < 0.01 vs. NN group) than in the NN group. Conclusions. Exposure to acute and/or short-term hypobaric and hypoxic conditions might exert cardioprotective effects against myocardial ischemia-reperfusion injury via HIF1α modulation.


Sign in / Sign up

Export Citation Format

Share Document