FC 064A RENAL-CARDIO INFLAMMATORY AXIS MEDIATES CARDIAC DYSFUNCTION IN CKD VIA IL-33-ST2: A NOVEL MECHANISM

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Alejandro Chade ◽  
Michael Hall ◽  
Deandra Fortenberry ◽  
Drew Bossier ◽  
Gene Bidwell

Abstract Background and Aims We developed a swine model of chronic kidney disease (CKD) that also display cardiac abnormalities associated with heart failure (HF). Inflammation contributes to progressive renal dysfunction and increases cardiovascular mortality of patients with CKD. Interleukin (IL)-33 is a tissue-derived nuclear cytokine from the IL family. IL-33 constitutively expressed but upregulated and released after cellular damage or necrotic cell death, acting as a pro-inflammatory cytokine. We hypothesize that IL-33 plays a prominent mechanistic role in renal-cardio pathophysiology in CKD. Method We induced CKD in 10 pigs via bilateral renovascular disease and dyslipidemia. We developed a renally-targeted biopolymer-fused peptide inhibitor of nuclear-factor kappa (NF-k)B (ELP-p50i) and show it blocks NFkB activity in vitro and in vivo. NF-kB is a key pro-inflammatory transcription factor upregulated in CKD and closely interacts with IL-33. Pigs were observed for 6 weeks, renal (multi-detector CT) and cardiac structure and function (echo) were quantified, then randomized to single intra-renal ELP-p50i or placebo (n=5 each), and studies repeated 8 weeks later. Blood was collected to measure circulating TNF-α, IL-33 and its specific decoy receptor soluble (s) ST2 (ELISA). Heart weights were measured after euthanasia, and renal and cardiac expression of ST2 and morphometric analyses were performed. Results Loss of renal function in CKD was accompanied by increased heart weight, left ventricular (LV) hypertrophy, diastolic dysfunction, abnormal LV strain, renal/cardiac fibrosis, circulating TNF-α, IL-33 but unchanged sST2, and increased renal/cardiac ST2 expression. Most of these changes were improved after intra-renal ELP-p50i and accompanied by augmented sST2, suggesting that inhibition of renal inflammation can attenuate cardiac abnormalities via augmented clearance of IL-33 (Figure). Conclusion Our study supports a prominent role for renal inflammation as a driving force for precursors of HF in CKD, proposing a renal-cardio inflammatory axis possibly mediated by NF-kB-TNF-α-IL-33/ST2 interactions. TNF-α can stimulate IL-33 as IL33 can activate NF-kB and TNF-α, extending this inflammatory loop in both the kidney and heart. We show that a translational renal anti-inflammatory strategy via targeted inhibition of renal NFkB inhibits this axis and improves renal and cardiac function, which may guide to new treatments targeting renal inflammation in CKD.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yang Zhao ◽  
Huaxin Sun ◽  
Kai Li ◽  
Luxiang Shang ◽  
Xiaoyan Liang ◽  
...  

Background. Cholinergic anti-inflammatory pathway (CAP) is implicated in cardioprotection in chronic heart failure (CHF) by downregulating inflammation response. Mitochondrial injuries play an important role in ventricular remodeling of the CHF process. Herein, we aim to investigate whether CAP elicitation prevents ventricular remodeling in CHF by protecting myocardial mitochondrial injuries and its underlying mechanisms. Methods and Results. CHF models were established by ligation of anterior descending artery for 5 weeks. Postoperative survival rats were assigned into 5 groups: the sham group (sham, n = 10 ), CHF group (CHF, n = 11 ), Vag group (CHF+vagotomy, n = 10 ), PNU group (CHF+PNU-282987 for 4 weeks, n = 11 ), and Vag+PNU group (CHF+vagotomy+PNU-282987 for 4 weeks, n = 10 ). The antiventricular remodeling effect of cholinergic elicitation was evaluated in vivo, and H9C2 cells were selected for the TNF-α gradient stimulation experiment in vitro. In vivo, CAP agitated by PNU-282987 alleviated the left ventricular dysfunction and inhibited the energy metabolism remodeling. Further, cholinergic elicitation increased myocardium ATP levels and reduced systemic inflammation. CAP induction alleviates macrophage infiltration and cardiac fibrosis, of which the effect is counteracted by vagotomy. Myocardial mitochondrial injuries were ameliorated by CAP activation, including the reserved ultrastructural integrity, declining ROS overload, reduced myocardial apoptosis, and enhanced mitochondrial fusion. In vitro, TNF-α intervention significantly exacerbated the mitochondrial damage in H9C2 cells. Conclusion. CAP elicitation effectively improves ischemic ventricular remodeling by suppressing systemic and cardiac inflammatory response, attenuating cardiac fibrosis and potentially alleviating the mitochondrial dysfunction linked to hyperinflammation reaction.


2013 ◽  
Vol 305 (4) ◽  
pp. H575-H589 ◽  
Author(s):  
Katarzyna Kazmierczak ◽  
Ellena C. Paulino ◽  
Wenrui Huang ◽  
Priya Muthu ◽  
Jingsheng Liang ◽  
...  

The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca2+ sensitivity of force (ΔpCa50 ≅ 0.1) and an ∼1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca2+ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Alejandro Chade ◽  
Maxx Williams ◽  
Jason Engel ◽  
Gene Bidwell

Abstract Background and Aims Inflammation contributes to progressive renal dysfunction and increases cardiovascular mortality of patients with chronic kidney disease (CKD). The association of CKD and heart failure with preserved ejection fraction (HFpEF) is observed in up to 50%, suggesting the possibility of a shared pathophysiology. CKD and HFpEF are commonly associated with inflammation. Using a novel swine model of CKD and HFpEF, we propose that a renal-cardio inflammatory axis drives diastolic dysfunction and HFpEF in CKD and that targeting renal inflammation will improve cardiac health and reduce cardiovascular risk. Methods We developed a biopolymer-fused peptide of nuclear-factor kappa (NFk)B (ELP-p50i) that we show it blocks its activity in vitro and in vivo. NFkB is a key pro-inflammatory transcription factor that is upregulated in CKD. To test our hypothesis, we induced CKD in 10 pigs via bilateral renovascular disease and dyslipidemia. Pigs were observed for 6 weeks, renal hemodynamics quantified (multi-detector CT), then randomized to single intra-renal ELP-p50i or placebo (n=5 each), and studies repeated 8 weeks later accompanied by echocardiographic assessment. Blood pressure was continuously measured (telemetry). Blood was collected to measure circulating TNF-α and biomarkers of HF (ANP, BNP). Furthermore, kidneys and hearts were used to quantify expression of factors involved in NFkB signaling. Results CKD led to a significant loss of renal function, accompanied by left ventricular hypertrophy and diastolic dysfunction with pEF, increased renal mRNA expression of TNF-α and canonical and non-canonical mediators of NFkB signaling, and elevated systemic TNF-α, ANP, and BNP, indicating renal and cardiac dysfunction. Most of these changes were improved after intra-renal ELP-p50i, although cardiac inflammatory signaling was unchanged (Figure) suggesting the kidney as a source of inflammation that can target the heart in CKD. Conclusion We show that a renal anti-inflammatory strategy via targeted inhibition of renal NFkB improves renal and cardiac function in CKD, suggesting an inflammatory renal-cardio axis. The translational pathological features of CKD and HFpEF combined with the predictive power of the model may contribute to advance the field towards new treatments targeting renal inflammation to reduce cardiovascular risk in CKD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 362-362
Author(s):  
Alexander Meyer ◽  
Wei Wang ◽  
Jay L. Degen ◽  
Barry S. Coller ◽  
Jasimuddin Ahamed

Abstract Abstract 362 Circulating platelets contain a high concentration of the multifunctional cytokine transforming growth factor-β1 (TGF-β1) in their α-granules and release it as an inactive (latent) complex upon platelet adhesion and/or activation. We recently demonstrated that shear force can activate latent TGF-β1 in vitro, and this mechanism may contribute to the activation of TGF-β1 that we observed in vivo in the carotid arteries following injury and thrombus formation. TGF-β1 is reported to be involved in the development of cardiac fibrosis in both humans and mouse models, but the cellular source(s) of TGF-β1 and its activation mechanism in vivo have not been clearly established. To test the hypothesis that platelet TGF-β1 contributes to cardiac fibrosis, we performed comparative studies of WT mice and gene-targeted animals with a megakaryocyte-specific deletion of TGF-β1 [PF4-Cre/Tgfb1flox (Tgfb1flox)] using the transverse aortic constriction (TAC) model in male C57Bl/6 mice. Both groups also underwent sham surgery as controls. We obtained blood by percutaneous puncture of the LV under ultrasound guidance and plasma samples were prepared by immediate centrifugation at 12,000 g for 5 min. This technique consistently results in plasma TGF-β1 levels in the range of ∼1.0 ng/ml, which are below those previously reported by most investigators. Tgfb1flox mice had 45% lower levels of plasma total TGF-β1 than WT animals, with a median total TGF-β1 level in WT of 1.37 ng/ml (IQR, interquartile range, 1.2–1.6; n=45) compared to 0.76 ng/ml (IQR 0.6–0.9; n=25)] in Tgfb1flox mice (p<0.001). Heart weight/body weight ratios were 42% higher in TAC- (n=15) than in sham- (n=16) operated WT mice (p<0.001) after 4 weeks, but only 11% higher in TAC- (n=13) than sham- (n=12) operated Tgfb1flox mice (p=0.02). The heart weight/body weight ratios correlated with total TGF-β1 levels in WT mice undergoing both sham and TAC surgery (r=0.66; p<0.001), but not in Tgfb1flox mice. Cardiac fibrosis was scored 4 weeks after surgery by an expert veterinary pathologist as 0 for no fibrosis, and 1+, 2+, or 3+ for mild, moderate, and severe fibrosis, respectively. 96% (22/23) of WT mice developed interstitial fibrosis after TAC, with 65% (15/23) developing mild and 30% (7/23) developing moderate (6/23) or severe (1/23) fibrosis. In contrast, only 54% (7/13) of Tgfb1flox mice developed interstitial fibrosis, with 31% (4/13) developing mild and 15% (2/13) developing moderate fibrosis; none developed severe fibrosis (p<0.01). The Tgfb1flox mice also had significantly less perivascular fibrosis than did the WT mice, although the differences were less evident (p=0.03). Cardiac function measured by echocardiography one week after TAC surgery demonstrated that Tgfb1flox mice had better systolic function than WT mice (Table).Table:Cardiac function measurements one week after TAC surgery.WTTgfb1flox†pEF [%]41 [37–48; n=11]56 [48–65; n=11]0.03SV [μl]20 [18–21; n=11]28 [24–33; n=11]0.003FS (%)27 [23–30; n=14]32 [28–37; n=13]0.05EF: ejection fraction; SV: stroke volume; FS: fractional shortening. Data are reported as median [IQR] †Wilcoxon Rank-Sum test. Presurgery values for EF, SV, and FS were similar in WT and Tgfb1flox mice We conclude that platelet TGF-β1 contributes to the development of cardiac hypertrophy, fibrosis, and systolic dysfunction induced by a high shear, TAC model. These data have important implications for understanding TGF-β1 biology and assessing the role of TGF-β1 in murine models of human diseases. Since shear can dramatically activate TGF-β1 in vitro, it is possible that increased shear force in the TAC mice generates active TGF-β1, which may contribute to the development of cardiac hypertrophy, fibrosis, and systolic dysfunction. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Kun Zhao ◽  
Jing Zhang ◽  
Tianhua Xu ◽  
Chuanxi Yang ◽  
Liqing Weng ◽  
...  

Abstract Background: Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by Angiotensin II (AngII). Concerning the fact that low‐intensity pulsed ultrasound (LIPUS) has been reported to improve cardiac dysfunction and myocardial fibrosis in myocardial infarction (MI) through mechanotransductionanditsdownstream pathways, we aimed to investigate whether LIPUS could also exert a protective effect on ameliorating AngII-induced cardiac hypertrophy and fibrosis andand if so, to further elucidate the underlying molecular mechanisms.Methods: In our study, we used AngII to mimic the animal and cell culture models of cardiac hypertrophy and fibrosis, where LIPUS irradiation (0.5MHz, 77.20mW/cm2) was applied for 20 minutes every 2 days from 1 week before surgery to 4 weeks after surgery in vivo, and every 6 hours for a total of 2 times in vitro. Following that, the levels of cardiac hypertrophy and fibrosis were evaluated by echocardiographic, histopathological, and molecular biological methods. Results: Our results showed that LIPUS irradiation could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-inducedrelease of inflammatory cytokines, while the protective effects were limited on cardiac hypertrophy in vitro. Given that LIPUS irradiation increased the expression of caveolin-1 related to mechanical stimulation, we inhibited caveolin-1 activity with pyrazolopyrimidine 2 (pp2) in vitro, by which LIPUS-induced downregulation of inflammation was reversed and the anti-fibrosis effects of LIPUS irradiation were absent. Conclusions: Taken together, these results indicate that LIPUS irradiation could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway, providing new insights for the development of novel therapeuticapparatus in clinical practice.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Taejeong Song ◽  
Rohit Singh ◽  
Darshini Desai ◽  
Sheryl E Koch ◽  
Jack Rubinstein ◽  
...  

Rationale: Cardiac m yosin binding protein-C regulates a ctomyosin interaction in striated muscle, but mutations in the MYBPC3 gene can lead to hypertrophic cardiomyopathy (HCM) as seen in some South Asians living in the USA carrying a novel variant wherein an aspartic acid is mutated to a valine at position 389 (D389V). Individuals and iPSC-derived cardiomyocytes carrying D389V display hypercontractility, indicating early onset of HCM. However, the mechanisms underlying the pathophysiology of this mutant in the context of HCM are unknown. Objective: To define the pathophysiological consequences D389V on myosin and cardiac function in vivo . Methods and Results: Compared with wild-type controls, our D389V knock-in homozygous mouse model showed decreased cardiac function by percentage of ejection fraction (-23%, P<0.01), but increased systolic left ventricular volume (+39%, P<0.01) at 3 and 6 months of age. Heart weight to tibia length ratio was significantly increased (+ 15%, P=0.05), demonstrating distinct pathogenicity. Using recombinant proteins carrying D389V substitution at the N-terminal MYBPC3 domains (rC0C2 D389V ), cosedimentation and solid-phase binding assays showed significantly reduced binding rate of rC0C2 D389V to the myosin S2 region (-55% and -23%, P<0.05, respectively), but in vitro actin motility over myosin increased 24% (P<0.05) compared to rC0C2 WT control, indicating a causal relationship between variant and decreased MYBPC3 binding to myosin. Human iPSC-derived D389V het cardiomyocytes display an increase in lipid peroxide and reactive oxygen species by +3- and +7-fold P<0.01, respectively, compared to noncarrier controls. Conclusion: D389V decreases interaction between MYBPC3 and myosin S2, causing reduced cardiac function and providing mechanistic evidence that it contributes to the etiology of HCM.


2007 ◽  
Vol 292 (5) ◽  
pp. H2408-H2416 ◽  
Author(s):  
Hongchao Zhang ◽  
Huan-You Wang ◽  
Rhonda Bassel-Duby ◽  
David L. Maass ◽  
William E. Johnston ◽  
...  

To examine the role of myocardial interleukin-6 (IL-6) in myocardial inflammation and dysfunction after burn complicated by sepsis, we performed 40% total body surface area contact burn followed by late (7 days) Streptococcus pneumoniae pneumonia sepsis in wild-type (WT) mice, IL-6 knockout (IL-6 KO) mice, and transgenic mice overexpressing IL-6 in the myocardium (TG). Twenty-four hours after sepsis was induced, isolated cardiomyocytes were harvested and cultured in vitro, and supernatant concentrations of IL-6 and tumor necrosis factor (TNF)-α were measured. Cardiomyocyte intracellular calcium ([Ca2+]i) and sodium ([Na+]i) concentrations were also determined. Separate mice in each group underwent in vivo global hemodynamic and cardiac function assessment by cannulation of the carotid artery and insertion of a left ventricular pressure volume conductance catheter. Hearts from these mice were collected for histopathological assessment of inflammatory response, fibrosis, and apoptosis. In the WT group, there was an increase in cardiomyocyte TNF-α, [Ca2+]i, and [Na+]i after burn plus sepsis, along with cardiac contractile dysfunction, inflammation, and apoptosis. These changes were attenuated in the IL-6 KO group but accentuated in the TG group. We conclude myocardial IL-6 mediates cardiac inflammation and contractile dysfunction after burn plus sepsis.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Carolin Zwadlo ◽  
Natali Froese ◽  
Johann Bauersachs ◽  
Joerg Heineke

Objectives: Left ventricular hypertrophy (LVH) is an independent risk factor for increased cardiovascular mortality and a precursor of heart failure. Gender-specific differences point to a pivotal role of androgens in the development of pathological LVH. Dihydrotestosterone (DHT) is metabolized from testosterone via the enzyme 5-α-reductase. The 5-α-reductase is upregulated in the hypertrophied myocardium, leading to our assumption that DHT rather than testosterone is the crucial component in the development of LVH and might therefore constitute a potential therapeutic target. Methods: One week after transverse aortic constriction (TAC) or sham surgery male wild-type mice were treated for 2 weeks via an oralgastric tube with the 5-α-reductase inhibitor finasteride (daily dose 25mg/kg BW) or were left untreated (controls). Male and female transgenic Gαq (TG, a model of dilative cardiomyopathy) or non-transgenic mice were treated with finasteride for 6 weeks. Results: Cardiac hypertrophy after TAC was dramatically reduced by finasteride in male mice (heart weight/ body weight ratio, HW/BW in mg/g: control 6.65±0.35 versus finasteride treated 5.23±0.3; p<0.01). The reduced hypertrophy in these mice was accompanied by a reduction in cardiomyocyte diameter, ANP expression and fibrosis, but increased capillary density and Serca2a expression. Accordingly, finasteride also markedly reduced hypertrophy in isolated primary rat cardiomyocytes in vitro . Amelioration of hypertrophy by finasteride was associated with blunted activation of the prohypertrophic kinase mTOR in vitro and in vivo . Left ventricular dilation in male Gαq TG mice was markedly reduced by treatment with finasteride, which also led to an improvement in left ventricular function (determined as fractional area change in % by echocardiography: finasteride 44.72±1.71 vs. control 32.8±3.84, p<0.05) and a similar trend was observed in female mice. Interestingly, finasteride reduced pulmonary congestion in male and female mice alike. Conclusion: Finasteride treatment reduces hypertrophy and eccentric cardiac remodelling in mice, indicating a possible involvement of DHT in these processes as well as a potential benefit of 5-α-reductase inhibition in cardiac disease.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 860
Author(s):  
David Bode ◽  
Yan Wen ◽  
Niklas Hegemann ◽  
Uwe Primessnig ◽  
Abdul Parwani ◽  
...  

Metabolic syndrome-mediated heart failure with preserved ejection fraction (HFpEF) is commonly accompanied by left atrial (LA) cardiomyopathy, significantly affecting morbidity and mortality. We evaluate the role of reactive oxygen species (ROS) and intrinsic inflammation (TNF-α, IL-10) related to dysfunctional Ca2+ homeostasis of LA cardiomyocytes in a rat model of metabolic HFpEF. ZFS-1 obese rats showed features of HFpEF and atrial cardiomyopathy in vivo: increased left ventricular (LV) mass, E/e’ and LA size and preserved LV ejection fraction. In vitro, LA cardiomyocytes exhibited more mitochondrial-fission (MitoTracker) and ROS-production (H2DCF). In wildtype (WT), pro-inflammatory TNF-α impaired cellular Ca2+ homeostasis, while anti-inflammatory IL-10 had no notable effect (confocal microscopy; Fluo-4). In HFpEF, TNF-α had no effect on Ca2+ homeostasis associated with decreased TNF-α receptor expression (western blot). In addition, IL-10 substantially improved Ca2+ release and reuptake, while IL-10 receptor-1 expression was unaltered. Oxidative stress in metabolic syndrome mediated LA cardiomyopathy was increased and anti-inflammatory treatment positively affected dysfunctional Ca2+ homeostasis. Our data indicates, that patients with HFpEF-related LA dysfunction might profit from IL-10 targeted therapy, which should be further explored in preclinical trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shasha Yu ◽  
Seo Rin Kim ◽  
Kai Jiang ◽  
Mikolaj Ogrodnik ◽  
Xiang Y. Zhu ◽  
...  

Global consumption of high-fat diets (HFD) is associated with an increased incidence of cardiometabolic syndrome and cardiac injury, warranting identification of cardioprotective strategies. Cardioprotective effects of quercetin (Q) have mostly been evaluated in ischemic heart disease models and attributed to senolysis. We hypothesized that Q could alleviate murine cardiac damage caused by HFD by restoring the myocardial microcirculation. C57BL/6J mice were fed standard chow or HFD for 6 months and then treated with Q (50 mg/kg) or vehicle 5-day biweekly for 10 additional weeks. Left ventricular (LV) cardiac function was studied in vivo using magnetic resonance imaging, and intramyocardial fat deposition, microvascular density, oxidative stress, and senescence were analyzed ex vivo. Additionally, direct angiogenic effects of Q were studied in vitro in HUVECs. HFD increased body weight, heart weight, total cholesterol, and triglyceride levels, whereas Q normalized heart weight and triglycerides. LV ejection fraction was lower in HFD vs. control mice ( 56.20 ± 15.8 % vs. 73.38 ± 5.04 % , respectively, P < 0.05 ), but improved in HFD + Q mice ( 67.42 ± 7.50 % , P < 0.05 , vs. HFD). Q also prevented cardiac fat accumulation and reduced HFD-induced cardiac fibrosis, cardiomyocyte hypertrophy, oxidative stress, and vascular rarefaction. Cardiac senescence was not observed in any group. In vitro, ox-LDL reduced HUVEC tube formation activity, which Q effectively improved. Quercetin may directly induce angiogenesis and decrease myocardial oxidative stress, which might account for its cardioprotective effects in the murine HFD-fed murine heart independently from senolytic activity. Furthermore, its beneficial effects might be partly attributed to a decrease in plasma triglycerides and intramyocardial fat deposition.


Sign in / Sign up

Export Citation Format

Share Document