Abstract 153: Inhibition of the 5-a-reductase Reduces Cardiac Hypertrophy and Improves Cardiac Function

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Carolin Zwadlo ◽  
Natali Froese ◽  
Johann Bauersachs ◽  
Joerg Heineke

Objectives: Left ventricular hypertrophy (LVH) is an independent risk factor for increased cardiovascular mortality and a precursor of heart failure. Gender-specific differences point to a pivotal role of androgens in the development of pathological LVH. Dihydrotestosterone (DHT) is metabolized from testosterone via the enzyme 5-α-reductase. The 5-α-reductase is upregulated in the hypertrophied myocardium, leading to our assumption that DHT rather than testosterone is the crucial component in the development of LVH and might therefore constitute a potential therapeutic target. Methods: One week after transverse aortic constriction (TAC) or sham surgery male wild-type mice were treated for 2 weeks via an oralgastric tube with the 5-α-reductase inhibitor finasteride (daily dose 25mg/kg BW) or were left untreated (controls). Male and female transgenic Gαq (TG, a model of dilative cardiomyopathy) or non-transgenic mice were treated with finasteride for 6 weeks. Results: Cardiac hypertrophy after TAC was dramatically reduced by finasteride in male mice (heart weight/ body weight ratio, HW/BW in mg/g: control 6.65±0.35 versus finasteride treated 5.23±0.3; p<0.01). The reduced hypertrophy in these mice was accompanied by a reduction in cardiomyocyte diameter, ANP expression and fibrosis, but increased capillary density and Serca2a expression. Accordingly, finasteride also markedly reduced hypertrophy in isolated primary rat cardiomyocytes in vitro . Amelioration of hypertrophy by finasteride was associated with blunted activation of the prohypertrophic kinase mTOR in vitro and in vivo . Left ventricular dilation in male Gαq TG mice was markedly reduced by treatment with finasteride, which also led to an improvement in left ventricular function (determined as fractional area change in % by echocardiography: finasteride 44.72±1.71 vs. control 32.8±3.84, p<0.05) and a similar trend was observed in female mice. Interestingly, finasteride reduced pulmonary congestion in male and female mice alike. Conclusion: Finasteride treatment reduces hypertrophy and eccentric cardiac remodelling in mice, indicating a possible involvement of DHT in these processes as well as a potential benefit of 5-α-reductase inhibition in cardiac disease.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Derk Frank ◽  
Robert Frauen ◽  
Christiane Hanselmann ◽  
Christian Kuhn ◽  
Rainer Will ◽  
...  

In order to identify new molecular mediators of cardiomyocyte hypertrophy, we performed a genome wide mRNA microarray screen of biomechanically stretched neonatal rat cardiomyocytes (NRCM). We found the novel sarcomeric LIM protein Dyxin/Lmcd1 being significantly upregulated (5.6x, p<0.001). Moreover, Dyxin was also significantly induced in several mouse models of myocardial hypertrophy including aortic banding, calcineurin overexpression and angiotensin stimulation, suggesting a potential role as a mediator of cardiac hypertrophy. To further test this hypothesis, we adenovirally overexpressed Dyxin in NRCM which potently induced cellular hypertrophy (150%, p<0.001) and the hypertrophic gene program (ANF, BNP). Consistent with an induction of calcineurin signalling, the calcineurin-responsive gene Rcan1– 4 (MCIP1.4) was found significantly upregulated (3.2x, p<0.001). Conversely, knockdown of Dyxin (−75% on protein level) via miRNA completely blunted the hypertrophic response to hypertrophic stimuli, including stretch and PE (both p<0.001). Furthermore, PE-mediated activation of calcineurin signaling (Upregulation of Rcan1– 4 by 7.3x, p<0.001) was completely blocked by knockdown of Dyxin. To confirm these results in vivo, we next generated transgenic mice with cardiac-restricted overexpression of Dyxin using the α -MHC promoter. Despite normal cardiac function as assessed by echocardiography, adult transgenic mice displayed significant cardiac hypertrophy in morphometrical analyses (3.9 vs. 3.5 mg/g LV/heart weight, n=8–11, p<0.05). This finding was supplemented by a robust induction of the hypertrophic gene program including ANF (3.7-fold, n=6, p=0.01) and α -skeletal actin (2.8-fold, n=6, p<0.05). Likewise, Rcan1– 4 was found upregulated (+112%, n=5, p<0.05), Taken together, we show that the novel sarcomeric z-disc protein Dyxin/Lmcd1 is significantly upregulated in several models of cardiac hypertrophy and potently induces cardiomyocyte hypertrophy both in vitro and in vivo. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Astrid H Breitbart ◽  
Florian Brandes ◽  
Oliver Müller ◽  
Natali Froese ◽  
Mortimer Korf-Klingebiel ◽  
...  

Background: CTRP9 (also called C1qtnf9) is a newly discovered secreted protein and a paralog of adiponectin. The biological functions of CTRP9, however, are still largely unknown. Results: Although previous data from a semi-quantitative real-time PCR had suggested that CTRP9 is mainly secreted by adipose tissue, we found its mRNA to be predominantly expressed in the heart by quantitative real-time PCR. Interestingly, we identified CTRP9 mRNA as significantly upregulated in hypertrophied mouse hearts (after 2 weeks of aortic constriction, TAC) as well as in hypertrophied human hearts (24±4-fold versus healthy human myocardium; p<0.01). LacZ staining in myocardial sections of C1qtnf9 tm1(KOMP)Vlcg mice (knock-out for CTRP9, containing a lacZ cassette to replace exon 1-3 of the gene) revealed exclusive expression of CTRP9 in capillary and venous endothelial cells. Adenoviral overexpression of CTRP9 or recombinant CTRP9 strongly inhibited cardiomyocyte hypertrophy (assessed as cell size, protein/DNA-ratio, expression of skeletal α-actin) after stimulation with phenylephrine (PE). Accordingly, myocardial overexpression of CTRP9 via a cardioselective adeno-associated virus (AAV9-CTRP9) in mice dramatically reduced cardiac hypertrophy after two weeks of pressure overload (heart weight/body weight ratio, HW/BW in mg/g: AAV9-control 6.5±0.2 versus AAV9-CTRP9 5.6±0.2; p<0.01). In turn, downregulation of CTRP9 by a specific siRNA aggravated cardiomyocyte growth in response to PE in vitro and CTRP9 knock-out (KO) mice exerted an enhanced hypertrophic response after two weeks of TAC in vivo (% increase in HW/BW versus sham: wild-type 77±13, KO 106±9; p<0.05). Mechanistically, we found that CTRP9 binds to the adiponectin receptor 1 (AdipoR1) and inhibits prohypertrophic mTOR signalling in cardiac myocytes. SiRNA mediated downregulation of AdipoR1 or mTOR in neonatal rat cardiomyocytes abolished the anti-hypertrophic effect of CTRP9. Conclusion: Endothelial cell derived CTRP9 inhibits cardiac hypertrophy through binding to AdipoR1 and inhibition of the mTOR pathway in cardiomyocytes. Therefore, myocardial application of CTRP9 could be a novel strategy to combat pathological cardiac hypertrophy.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Navid Koleini ◽  
Jon Jon Santiago ◽  
Barbara E Nickel ◽  
Robert Fandrich ◽  
Davinder S Jassal ◽  
...  

Introduction: Protection of the heart from chemotherapeutic (Doxorubicin, DOX) drug-induced toxicity is a desirable goal, to limit side effects of cancer treatments. DOX toxicity has been linked to the activation (phosphorylation) of the AMP-activated kinase, AMPK. The 18 kDa low molecular weight isoform of fibroblast growth factor 2 (Lo-FGF-2) is a known cardioprotective and cytoprotective agent. In this study we have tested the ability of Lo-FGF-2 to protect from DOX-induced damage in rat cardiomyocytes in vitro, and in transgenic mouse models in vivo, in relation to AMPK activation. Methods: Rat neonatal cardiomyocytes in culture were exposed to DOX (0.5 μM) in the presence or absence of pre-treatment Lo-FGF-2 (10 ng/ml). Compound C was used to block phosphorylation (activity) of AMPK. Levels of cell viability/death (using Calcein-AM/Propidium iodide assay), phospho -and total AMPK, and apoptotic markers such as active caspase 3 were analyzed. In addition, transgenic mice expressing only Lo-FGF2, and wild type mice, expressing both high molecular weight (Hi-FGF2) as well as Lo-FGF2 were subjected to DOX injection (20 mg/kg, intraperitoneal); echocardiography was used to examine cardiac function at baseline and at 10 days post-DOX. Results: DOX-induced cell death of cardiomyocytes in culture was maximal at 24 hours post-DOX coinciding with significantly increased in activated (phosphorylated) AMPK. Compound C attenuated DOX-induced cardiomyocyte loss. Pre-incubation with Lo-FGF-2 decreased DOX induced cell death, and also attenuated the phosphorylation of AMPK post-DOX. Relative levels of phospho-AMPK were lower in the hearts of Lo-FGF2-expressing male mice compared to wild type. DOX-induced loss of contractile function (left ventricular ejection fraction and endocardial velocity) was negligible in Lo-FGF2-expressing mice but significant in wild type mice. Conclusion: Lo-FGF-2 protects the heart from DOX-induced damage in vitro and in vivo, by a mechanism likely involving an attenuation of AMPK activity.


2001 ◽  
Vol 280 (5) ◽  
pp. H2264-H2270 ◽  
Author(s):  
Brian B. Roman ◽  
David L. Geenen ◽  
Michael Leitges ◽  
Peter M. Buttrick

Studies in human and rodent models have shown that activation of protein kinase C-β (PKC-β) is associated with the development of pathological hypertrophy, suggesting that ablation of the PKC-β pathway might prevent or reverse cardiac hypertrophy. To explore this, we studied mice with targeted disruption of the PKC-β gene (knockout, KO). There were no detectable differences in expression or distribution of other PKC isoforms between the KO and control hearts as determined by Western blot analysis. Baseline hemodynamics were measured using a closed-chest preparation and there were no differences in heart rate and arterial or left ventricular pressure. Mice were subjected to two independent hypertrophic stimuli: phenylephrine (Phe) at 20 mg · kg−1 · day−1 sq infusion for 3 days, and aortic banding (AoB) for 7 days. KO animals demonstrated an increase in heart weight-to-body weight ratio (Phe, 4.3 ± 0.6 to 6.1 ± 0.4; AoB, 4.0 ± 0.1 to 5.8 ± 0.7) as well as ventricular upregulation of atrial natriuretic factor mRNA analogous to those seen in control animals. These results demonstrate that PKC-β expression is not necessary for the development of cardiac hypertrophy nor does its absence attenuate the hypertrophic response.


1996 ◽  
Vol 271 (6) ◽  
pp. H2197-H2208 ◽  
Author(s):  
J. Lai ◽  
H. Jin ◽  
R. Yang ◽  
J. Winer ◽  
W. Li ◽  
...  

Several prostaglandins [prostaglandin (PG) A2, -B2, -D2, -E2, -F2 alpha, and -I2 and carbaprostacyclin] and the thromboxane analogue U-46619 were analyzed for the ability to induce hypertrophy of rat neonatal cardiac ventricular myocytes. Myocyte hypertrophy was induced specifically by PGF2 alpha. Myocytes exposed to this prostanoid in culture increased in size and protein content. The contractile fibrils within the cells became organized into parallel arrays, and the cells tended to cluster and beat spontaneously. PGF2 alpha also induced the expression of c-fos, atrial natriuretic factor (ANF), and alpha-skeletal actin in these cells. The effects of PGF2 alpha were compared with several known cardiac myocyte hypertrophy factors (phenylephrine, endothelin-1, leukemia inhibitory factor, cardiotrophin-1, and angiotensin II). PGF2 alpha was found to be intermediate in potency among the factors but induced a level of ANF production that was approximately 10-fold higher than any of the other effectors. Responsiveness to PGF2 alpha was not limited to neonatal cardiocytes. Ventricular myocytes isolated from adult rats also responded specifically to PGF2 alpha with a morphological change similar to that observed with phenylephrine and by producing ANF. In rats, chronic administration of fluprostenol, a potent agonist analogue of PGF2 alpha, resulted in a dose-dependent increase in heart weight- and ventricular weight-to-body weight ratios. The amount of PGF2 alpha extractable from the hearts of rats with cardiac hypertrophy induced by myocardial infarction was also found to be greater than that in sham-operated control rats. These results indicate that PGF2 alpha may play an important role in inducing cardiac hypertrophy.


2013 ◽  
Vol 305 (4) ◽  
pp. H575-H589 ◽  
Author(s):  
Katarzyna Kazmierczak ◽  
Ellena C. Paulino ◽  
Wenrui Huang ◽  
Priya Muthu ◽  
Jingsheng Liang ◽  
...  

The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca2+ sensitivity of force (ΔpCa50 ≅ 0.1) and an ∼1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca2+ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.


1996 ◽  
Vol 271 (6) ◽  
pp. H2360-H2367 ◽  
Author(s):  
J. Meszaros ◽  
K. O. Ryder ◽  
G. Hart

We have demonstrated that a daily injection of isoproterenol (5 mg/kg ip) for 7 days induces a 30% increment in heart weight-to-body weight ratio and prolongs the action potential duration (APD) in male Wistar rats. The underlying mechanism of the prolonged APD was investigated in this model of hypertrophy by measuring the transient outward potassium current (Ito) in left ventricular myocytes of the rat with whole cell voltage-clamp techniques. Cell membrane capacitance was increased by 39%: 122 +/- 3 (n = 23) and 171 +/- 5 (SE) pF (n = 20) in control and hypertrophy, respectively (P < 0.001). Ito was evoked in sodium-free solutions containing 0.5 mM Ca2+ and 2 mM Co2+ by step depolarizations from a holding potential of -80 mV. The amplitude of the 4-aminopyridine-sensitive Ito (at 70 mV) was reduced by 28% in hypertrophy: 3.2 +/- 0.3 (n = 23) and 2.3 +/- 0.4 (SE) nA (n = 20) in control and hypertrophy, respectively (P < 0.05). When normalized for cell capacitance, the reduction was much larger: 26.4 +/- 2.5 and 13.1 +/- 1.8 pA/pF in control and hypertrophy, respectively (P < 0.001). The voltage dependence of Ito was similar in both cell types. No change was observed in the steady-state activation and inactivation kinetics in the two groups, nor was there a change in the time dependence of inactivation. The recovery from inactivation of Ito when fitted with a monoexponential function was not changed significantly in hypertrophy: time constants = 8.2 +/- 0.4 (n = 13) and 8.3 +/- 0.3 ms (n = 12) in control and hypertrophy, respectively. These results show that Ito density is decreased in catecholamine-induced cardiac hypertrophy, but current kinetics are not affected. The reduced Ito density may underlie the prolongation of APD in this model of hypertrophy.


2006 ◽  
Vol 290 (1) ◽  
pp. H279-H285 ◽  
Author(s):  
Xiuhua Liu ◽  
Tianbo Li ◽  
Sheng Sun ◽  
Feifei Xu ◽  
Yiguang Wang

Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively ( P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes ( P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.


2013 ◽  
Vol 305 (1) ◽  
pp. H124-H134 ◽  
Author(s):  
Tamás Radovits ◽  
Attila Oláh ◽  
Árpád Lux ◽  
Balázs Tamás Németh ◽  
László Hidi ◽  
...  

Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/μl) and improved LV active relaxation (τ: 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Soheb Anwar Mohammed ◽  
Bugga Paramesha ◽  
Yashwant Kumar ◽  
Ubaid Tariq ◽  
Sudheer Kumar Arava ◽  
...  

Allylmethylsulfide (AMS) is a novel sulfur metabolite found in the garlic-fed serum of humans and animals. In the present study, we have observed that AMS is safe on chronic administration and has a potential antihypertrophic effect. Chronic administration of AMS for 30 days did not cause any significant differences in the body weight, electrocardiogram, food intake, serum biochemical parameters, and histopathology of vital organs. Single-dose pharmacokinetics of AMS suggests that AMS is rapidly metabolized into Allylmethylsulfoxide (AMSO) and Allylmethylsulfone (AMSO2). To evaluate the efficacy of AMS, cardiac hypertrophy was induced by subcutaneous implantation of ALZET® osmotic minipump containing isoproterenol (~5 mg/kg/day), cotreated with AMS (25 and 50 mg/kg/day) and enalapril (10 mg/kg/day) for 2 weeks. AMS and enalapril significantly reduced cardiac hypertrophy as studied by the heart weight to body weight ratio and mRNA expression of fetal genes (ANP and β-MHC). We have observed that TBARS, a parameter of lipid peroxidation, was reduced and the antioxidant enzymes (glutathione, catalase, and superoxide dismutase) were improved in the AMS and enalapril-cotreated hypertrophic hearts. The extracellular matrix (ECM) components such as matrix metalloproteinases (MMP2 and MMP9) were significantly upregulated in the diseased hearts; however, with the AMS and enalapril, it was preserved. Similarly, caspases 3, 7, and 9 were upregulated in hypertrophic hearts, and with the AMS and enalapril treatment, they were reduced. Further to corroborate this finding with in vitro data, we have checked the nuclear expression of caspase 3/7 in the H9c2 cells treated with isoproterenol and observed that AMS cotreatment reduced it significantly. Histopathological investigation of myocardium suggests AMS and enalapril treatment reduced fibrosis in hypertrophied hearts. Based on our experimental results, we conclude that AMS, an active metabolite of garlic, could reduce isoproterenol-induced cardiac hypertrophy by reducing oxidative stress, apoptosis, and stabilizing ECM components.


Sign in / Sign up

Export Citation Format

Share Document