scholarly journals EXTH-10. COMBINATION OF EPIGENETIC ENZYME INHIBITORS, GSK-J4 AND BELINOSTAT, REVEALS HIGH EFFICACY IN IDH1 MUTANT GLIOMAS

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii88-ii89
Author(s):  
Alisan Kayabolen ◽  
Gizem Nur Sahin ◽  
Fidan Seker ◽  
Ahmet Cingoz ◽  
Bekir Isik ◽  
...  

Abstract Mutations in IDH1 and IDH2 genes are common in low grade gliomas and secondary GBM and are known to cause a distinct epigenetic landscape in these tumors. To interrogate the epigenetic vulnerabilities of IDH-mutant gliomas, we performed a chemical screen with inhibitors of chromatin modifiers and identified 5-azacytidine, Chaetocin, GSK-J4 and Belinostat as potent agents against primary IDH1-mutant cell lines. Testing the combinatorial efficacy of these agents, we demonstrated GSK-J4 and Belinostat combination as a very effective treatment for the IDH1-mutant glioma cells. Engineering established cell lines to ectopically express IDH1R132H, we showed that IDH1R132H cells adopted a different transcriptome with changes in stress-related pathways that were reversible with the mutant IDH1 inhibitor, GSK864. The combination of GSK-J4 and Belinostat was highly effective on IDH1R132H cells, but not on wt glioma cells or nonmalignant fibroblasts and astrocytes. The cell death induced by GSK-J4 and Belinostat combination involved the induction of cell cycle arrest and apoptosis. RNA sequencing analyses revealed activation of inflammatory and unfolded protein response pathways in IDH1-mutant cells upon treatment with GSK-J4 and Belinostat conferring increased stress to glioma cells. Specifically, GSK-J4 induced ATF4-mediated integrated stress response and Belinostat induced cell cycle arrest in primary IDH1-mutant glioma cells; which were accompanied by DDIT3/CHOP-dependent upregulation of apoptosis. Moreover, to dissect out the responsible target histone demethylase, we undertook genetic approach and demonstrated that CRISPR/Cas9 mediated ablation of both KDM6A and KDM6B genes phenocopied the effects of GSK-J4 in IDH1-mutant cells. Finally, GSK-J4 and Belinostat combination significantly decreased tumor growth and increased survival in an orthotopic model in mice. Together, these results suggest a potential combination epigenetic therapy against IDH1-mutant gliomas.

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i6-i7
Author(s):  
Alişan Kayabölen ◽  
Gizem Nur Sahin ◽  
Fidan Seker ◽  
Ahmet Cingöz ◽  
Bekir Isik ◽  
...  

Abstract Mutations in IDH1 and IDH2 genes are common in low grade gliomas and secondary GBM and are known to cause a distinct epigenetic landscape in these tumors. To interrogate the epigenetic vulnerabilities of IDH-mutant gliomas, we performed a chemical screen with inhibitors of chromatin modifiers and identified 5-azacytidine, Chaetocin, GSK-J4 and Belinostat as potent agents against primary IDH1-mutant cell lines. Testing the combinatorial efficacy of these agents, we demonstrated GSK-J4 and Belinostat combination as a very effective treatment for the IDH1-mutant glioma cells. Engineering established cell lines to ectopically express IDH1R132H, we showed that IDH1R132H cells adopted a different transcriptome with changes in stress-related pathways that were reversible with the mutant IDH1 inhibitor, GSK864. The combination of GSK-J4 and Belinostat was highly effective on IDH1R132H cells, but not on wt glioma cells or nonmalignant fibroblasts and astrocytes. The cell death induced by GSK-J4 and Belinostat combination involved the induction of cell cycle arrest and apoptosis. RNA sequencing analyses revealed activation of inflammatory and unfolded protein response pathways in IDH1-mutant cells upon treatment with GSK-J4 and Belinostat conferring increased stress to glioma cells. Specifically, GSK-J4 induced ATF4-mediated integrated stress response and Belinostat induced cell cycle arrest in primary IDH1-mutant glioma cells; which were accompanied by DDIT3/CHOP-dependent upregulation of apoptosis. Moreover, to dissect out the responsible target histone demethylase, we undertook genetic approach and demonstrated that CRISPR/Cas9 mediated ablation of both KDM6A and KDM6B genes phenocopied the effects of GSK-J4 in IDH1-mutant cells. Finally, GSK-J4 and Belinostat combination significantly decreased tumor growth and increased survival in an orthotopic model in mice. Together, these results suggest a potential combination epigenetic therapy against IDH1-mutant gliomas.


2018 ◽  
Author(s):  
Jennifer Hüllein ◽  
Mikołaj Słabicki ◽  
Maciej Rosolowski ◽  
Alexander Jethwa ◽  
Stefan Habringer ◽  
...  

AbstractOncogenic MYC activation promotes cellular proliferation in Burkitt lymphoma (BL), but also induces cell cycle arrest and apoptosis mediated by TP53, a tumor suppressor gene that is mutated in 40% of BL cases. To identify therapeutic targets in BL, we investigated molecular dependencies in BL cell lines using RNAi-based, loss-of-function screening. By integrating genotypic and RNAi data, we identified a number of genotype-specific dependencies including the dependence of TCF3/ID3 mutant cell lines on TCF3 and of MYD88 mutant cell lines on TLR signaling. TP53 wild-type (TP53wt) BL were dependent on MDM4, a negative regulator of TP53. In BL cell lines, MDM4 knockdown induced cell cycle arrest and decreased tumor growth in a xenograft model in a p53-dependent manner, while small molecule inhibition of the MDM4-p53 interaction restored p53 activity resulting in cell cycle arrest. Consistent with the pathogenic effect of MDM4 upregulation in BL, we found that TP53wt BL samples were enriched for gain of chromosome 1q which includes the MDM4 locus. 1q gain was also enriched across non-BL cancer cell lines (n=789) without TP53 mutation (23% in TP53wt and 12% in TP53mut, p<0.001). In a set of 216 cell lines representing 19 cancer entities from the Achilles project, MDM4 was the strongest genetic dependency in TP53wt cell lines (p<0.001).Our findings show that in TP53wt BL, MDM4-mediated inhibition of p53 is a mechanism to evade cell cycle arrest. The data highlight the critical role of p53 as a tumor suppressor in BL, and identifies MDM4 as a key functional target of 1q gain in a wide range of cancers, which is therapeutically targetable.


2018 ◽  
Vol 15 (3) ◽  
pp. 246-255 ◽  
Author(s):  
Long Zhao ◽  
Xiaoping Tang ◽  
Renguo Luo ◽  
Jie Duan ◽  
Yuanchuan Wang ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


1996 ◽  
Vol 74 (5) ◽  
pp. 698-703 ◽  
Author(s):  
KJ Williams ◽  
J Heighway ◽  
JM Birch ◽  
JD Norton ◽  
D Scott

2016 ◽  
Vol 13 (2) ◽  
pp. 1007-1013 ◽  
Author(s):  
Aisha Maimaitili ◽  
Zunhua Shu ◽  
Xiaojiang Cheng ◽  
Kadeer Kaheerman ◽  
Alifu Sikandeer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document