scholarly journals TAMI-11. IMPACT OF oHSV ACTIVATED NOTCH SIGNALING IN TUMOR MICROENVIRONMENT, AND ITS IMPACT ON ANTI-TUMOR IMMUNITY

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii215-ii215
Author(s):  
Yoshihiro Otani ◽  
Ji Young Yoo ◽  
Samantha Chao ◽  
Toshihiko Shimizu ◽  
Cole Lewis ◽  
...  

Abstract NOTCH signaling is a method of cell-cell communication where membrane bound NOTCH ligands on signal-sending cells can bind to and initiate cleavage of the NOTCH receptor, releasing NICD which can initiate signal transduction in adjacent “signal-receiving” cells. We have recently shown that oHSV treatment of GBM cells induces NICD cleavage and NOTCH activation in adjacent uninfected glioma cells. RNA sequencing of GBM cells post-infection also uncovered Gene Ontology NOTCH signaling pathway to be significantly upregulated. This activation was induced by viral miRNA-H16, which represses FIH-1 expression. FIH-1 was found to be a negative regulator of Mib1, a ubiquitin ligase, which activates NOTCH ligand-mediated activation of adjacent signal-receiving cells bearing the NOTCH receptor (Otani et al Clin. Can. Res. 2020). Here we have investigated the impact of oHSV-induced NOTCH signaling on the tumor microenvironment. Treatment of brain tumors in immune competent mice with oHSV and NOTCH blocking gamma secretase inhibitor (GSI) induced an anti-tumor memory immune response. Long term survivors in mice treated with the combination also completely rejected subsequent tumor re-challenge in the other hemisphere. UMAP of flow cytometry of tumor-bearing hemispheres and functional analysis of isolated cellular fractions from treated mice showed a significant influx of MDSC cells after oHSV treatment that was rescued in mice treated with oHSV and GSI. Ongoing mechanistic studies are uncovering a significant induction of NOTCH in tumor associated macrophages that aids in recruitment of MDSC cells. Overall these studies have uncovered a significant impact of oHSV therapy on GBM tumor microenvironment and presents opportunities for combination therapies that can help improve therapeutic benefit and anti-tumor immunity.

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi7-vi7
Author(s):  
Otani Yoshihiro ◽  
Ji Young Yoo ◽  
Sean E Lawler ◽  
Antonio E Chiocca ◽  
Balveen Kaur

Abstract Oncolytic herpes simplex virus-1 (oHSV) is novel FDA-approved immunotherapy for advanced melanoma patients in US. Also, oHSV is recently approved for the treatment of recurrent GBM in Japan. We have shown that oHSV treatment of GBM cells induces NICD cleavage and NOTCH activation in adjacent uninfected glioma cells via HSV-1 microRNA-H16 (Otani Y and Yoo JY, Clin Cancer Res, 2020), however, the consequences of NOTCH on immunotherapy in GBM is unknow. Here we have investigated the impact of oHSV-induced NOTCH signaling on the tumor microenvironment (TME). Analysis of TCGA GBM data and experimental murine models revealed NOTCH induced immunosuppressive myeloid cell recruitment and limited anti-tumor immunity. In oHSV treated tissue, viral infection educated tumor associated macrophages to secrete CCL2 which recruited monocytic myeloid derived suppressor cell (MDSC) that attenuated anti-tumor immunity. Consistent with this, CCL2 induction was also observed in serum of recurrent GBM patients treated with oHSV (NCT03152318). Importantly, blockade of NOTCH signaling reduced the oHSV induced immunosuppressive environment and activated a CD8 dependent anti-tumor memory response. These findings present the opportunities for combination therapies that can help improve therapeutic benefit and anti-tumor immunity in GBM.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 521
Author(s):  
Catia Giovannini ◽  
Francesca Fornari ◽  
Fabio Piscaglia ◽  
Laura Gramantieri

The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.


2008 ◽  
Vol 182 (6) ◽  
pp. 1113-1125 ◽  
Author(s):  
An-Chi Tien ◽  
Akhila Rajan ◽  
Karen L. Schulze ◽  
Hyung Don Ryoo ◽  
Melih Acar ◽  
...  

Notch-mediated cell–cell communication regulates numerous developmental processes and cell fate decisions. Through a mosaic genetic screen in Drosophila melanogaster, we identified a role in Notch signaling for a conserved thiol oxidase, endoplasmic reticulum (ER) oxidoreductin 1–like (Ero1L). Although Ero1L is reported to play a widespread role in protein folding in yeast, in flies Ero1L mutant clones show specific defects in lateral inhibition and inductive signaling, two characteristic processes regulated by Notch signaling. Ero1L mutant cells accumulate high levels of Notch protein in the ER and induce the unfolded protein response, suggesting that Notch is misfolded and fails to be exported from the ER. Biochemical assays demonstrate that Ero1L is required for formation of disulfide bonds of three Lin12-Notch repeats (LNRs) present in the extracellular domain of Notch. These LNRs are unique to the Notch family of proteins. Therefore, we have uncovered an unexpected requirement for Ero1L in the maturation of the Notch receptor.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 10526-10526
Author(s):  
R. D. Meng ◽  
L. Qin ◽  
C. C. Shelton ◽  
Y. Li ◽  
R. G. Maki ◽  
...  

10526 Background: The Notch pathway directs normal fat cell development, but its aberrant activation may promote the development of sarcomas. The expression of the Notch pathway in liposarcoma (LPS), however, is unknown. We examined Notch signaling components in LPS's and suppressed Notch activation with drug targeting in LPS cell lines. Methods: RNA was isolated from 18 normal fat and 140 LPS tissue samples from five LPS subtypes: well-differentiated (33%), de-differentiated DD (25%), myxoid (12%), round cell (6%), and pleomorphic (13%), and were hybridized to Affymetrix U133A arrays. Microarray data were normalized with the RMA method. Correlation analysis identified genes expressed between sample classes, using Empirical Bayes t-test, and genes associated with survival, using Cox regression. The Notch pathway in two LPS lines, DDLS and LS141, was suppressed with a novel gamma-secretase inhibitor (GSI) or with siRNA to Notch receptors. Viability was assessed by colony formation, apoptosis by DAPI staining, and Notch expression by immunoblotting. Results: Expression of Notch-3 and its targets, Hes-1, Hey-1, and survivin, was increased in LPS subtypes, compared to fat tissue (p<0.001). Inhibition of Notch signaling with GSI's or siRNA to Notch-1 suppressed the viability of both DD LPS lines (p<0.05), inducing a G1/S arrest followed by apoptosis. Transfection of siRNA to each Notch receptor, especially Notch-3, also suppressed the viability of DD LPS's (p<0.05). Expression of Notch-3 (p=0.027, HR=2.64), Notch-4 (p=0.026, HR=2.70), the ligand JAG-2 (p=0.049, HR=2.32), and Hey-1 (p=0.001, HR=4.25) was associated with reduced distant recurrence free survival in patients with DD LPS's. Expression of the negative Notch regulator Fbxw7 was associated with improved overall survival in patients with LPS (p=0.008, HR=-1.42). Conclusions: Elements of the Notch pathway (receptors, ligands, targets, and modifiers) are overexpressed in LPS's compared to normal fat tissue and associate with outcome. Suppression of Notch signaling decreased DD LPS cell line viability and induced apoptosis. Notch inhibition may represent a new therapeutic strategy for patients with LPS's and deserves further validation in a clinical trial. No significant financial relationships to disclose.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Patipark Kueanjinda ◽  
Sittiruk Roytrakul ◽  
Tanapat Palaga

Abstract Activation of macrophages triggers the release of pro-inflammatory cytokines leading to inflammation. Numb is a negative regulator of Notch signaling, but the role of Numb in macrophages is not fully understood. In this study, the role of Numb as a regulator of inflammatory responses in macrophages was investigated. Murine bone marrow-derived macrophages, in which expression of Numb was silenced, secreted significantly less TNFα, IL-6 and IL-12 and more IL-10 upon activation by lipopolysaccharide (LPS), a ligand for Toll-like receptor 4 (TLR4), despite increased Notch signaling. The Tnfα mRNA levels both in Numb-deficient and wild-type macrophages were not significantly different, unlike those of Il6 and Il12-p40. In Numb-deficient macrophages, the Tnfα mRNAs were degraded at faster rate, compared to those in control macrophages. Activation of p38 MAPK and NF-κΒ p65 were compromised in activated Numb deficient macrophages. Numb was found to interact with the E3 ubiquitin ligase, Itch, which reportedly regulates p38 MAPK. In addition, blocking the Notch signaling pathway in activated, Numb-deficient macrophages did not further reduce TNFα levels, suggesting a Notch-independent role for Numb. A proteomics approach revealed a novel funciton for Numb in regulating complex signaling cascades downstream of TLRs, partially involving Akt/NF-κB p65/p38 MAPK in macrophages.


2012 ◽  
Vol 287 (35) ◽  
pp. 29429-29441 ◽  
Author(s):  
Julien Moretti ◽  
Patricia Chastagner ◽  
Chih-Chao Liang ◽  
Martin A. Cohn ◽  
Alain Israël ◽  
...  

1998 ◽  
Vol 18 (12) ◽  
pp. 7423-7431 ◽  
Author(s):  
Sophie Jarriault ◽  
Odile Le Bail ◽  
Estelle Hirsinger ◽  
Olivier Pourquié ◽  
Frédérique Logeat ◽  
...  

ABSTRACT The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown inDrosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Splitgenes. Genetic evidence has also implicated the kuzbaniangene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 aHES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-inducedHES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenousHES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do.


2016 ◽  
Vol 27 (18) ◽  
pp. 2857-2866 ◽  
Author(s):  
Seth A. Johnson ◽  
Diana Zitserman ◽  
Fabrice Roegiers

The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.


2013 ◽  
Vol 210 (2) ◽  
pp. 301-319 ◽  
Author(s):  
Camille Lobry ◽  
Panagiotis Ntziachristos ◽  
Delphine Ndiaye-Lobry ◽  
Philmo Oh ◽  
Luisa Cimmino ◽  
...  

Notch signaling pathway activation is known to contribute to the pathogenesis of a spectrum of human malignancies, including T cell leukemia. However, recent studies have implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and several solid tumors. Here we report a novel tumor suppressor role for Notch signaling in acute myeloid leukemia (AML) and demonstrate that Notch pathway activation could represent a therapeutic strategy in this disease. We show that Notch signaling is silenced in human AML samples, as well as in AML-initiating cells in an animal model of the disease. In vivo activation of Notch signaling using genetic Notch gain of function models or in vitro using synthetic Notch ligand induces rapid cell cycle arrest, differentiation, and apoptosis of AML-initiating cells. Moreover, we demonstrate that Notch inactivation cooperates in vivo with loss of the myeloid tumor suppressor Tet2 to induce AML-like disease. These data demonstrate a novel tumor suppressor role for Notch signaling in AML and elucidate the potential therapeutic use of Notch receptor agonists in the treatment of this devastating leukemia.


Sign in / Sign up

Export Citation Format

Share Document