scholarly journals HGG-31. HISTONE H3.3 G34R/V MUTATIONS STIMULATE PEDIATRIC HIGH-GRADE GLIOMA FORMATION THROUGH THE INDUCTION OF CHROMOSOMAL INSTABILITY

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i23-i23
Author(s):  
Florina Grigore ◽  
James Robinson ◽  
Alyssa Langfald ◽  
Edward Hinchcliffe ◽  
Charles Day

Abstract The histone H3.3 G34R/V mutations are known drivers of high-grade pediatric glioma (pHGG). However, the mechanism(s) for H3.3 G34R/V induced tumor formation are unclear. Chk1 phosphorylates H3.3 S31 at the pericentromere during early mitosis, suggesting a novel mitotic function. We observed that H3.3 G34 mutant pHGG cells have reduced mitotic H3.3 S31 phosphorylation compare to WT H3.3 cell lines. The H3.3 G34R mutation reduced Chk1 phosphorylation at S31 by >90% in an in vitro kinase assay. Overexpression of either H3.3 G34R or non-phosphorylatable S31A in H3.3 WT, diploid cells led to a significant increase in chromosome mis-segregations. Likewise, H3.3 G34 mutant pHGG cells have significantly elevated rates of mis-segregation as compare to H3.3 WT pHGG cells. During normal cell division, phospho-S31 is lost in late anaphase. However, when chromosome missegregation occurs, phospho-S31 spreads and stimulates p53 accumulation in G1 – thus suppressing aneuploid cell proliferation. Here we show that cells expressing mutant G34 fail to arrest following mis-segregation, despite having WT p53. These studies demonstrate that the H3.3 G34R/V mutations are sufficient to transform normal, diploid cells into proliferative, chromosomally instable cells. To determine if this process contributes to tumorigenesis, we used the RCAS/TVA mouse model to overexpress H3.3 WT, G34R, or S31A in the glial precursor cells of mice pups. Over 100 days, S31A and G34R mice had drastically reduced survival (averaging 77, 81, and 100 days for S31A, G34R, and WT mice). Furthermore, most G34R and S31A mice developed HGG, while H3.3 WT mice remained tumor-free and did not develop high-grade tumors. Our work strongly indicates that a major factor in H3.3 G34R pHGG formation is the induction of chromosomal instability – which occurs directly through the suppression of H3.3 S31 phosphorylation.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi29-vi29
Author(s):  
Charles Day ◽  
Florina Grigore ◽  
Alyssa Langfald ◽  
Edward Hinchcliffe ◽  
James Robinson

Abstract H3.3 G34R/V mutations are drivers of high-grade pediatric glioma (pHGG). H3.3 G34R/V mutations are linked to altered H3.3 K36 trimethylation (H3K36me3); implicating epigenetic gene regulation as a possible contributor to pHGG formation. Here we show that H3.3 G34R/V also induces chromosomal instability (CIN); a hallmark of pHGG. If CIN promotes pHGG formation is unknown. We observed that H3.3 G34 mutant pHGG cells have reduced mitotic H3.3 S31 phosphorylation compare to WT H3.3 cell lines. And, H3.3 G34R reduced Chk1 phosphorylation at S31 by >90% in an in vitro kinase assay. Chk1 regulates chromosome segregation through phosphorylation of pericentromeric H3.3 S31 during early mitosis. Overexpression of H3.3 G34R or non-phosphorylatable S31A in H3.3 WT, diploid cells caused a significant increase in CIN. Likewise, H3.3 G34 mutant pHGG cells have significantly elevated rates of CIN as compare to H3.3 WT pHGG cells. During normal cell division, phospho-S31 is lost in anaphase. However, following chromosome missegregation, phospho-S31 spreads and stimulates p53-induced cell cycle arrest. Here we show that WT p53 cells expressing mutant G34 fail to arrest following chromosome mis-segregation. These studies demonstrate that H3.3 G34R/V mutations are sufficient to transform normal, diploid cells into proliferating CIN cells. To determine if this process contributes to tumorigenesis, we used RCAS Nestin-TVA mice to overexpress H3.3 WT, G34R, or S31A – P2A-linked to PDGFB expression in glial precursor cells of newborn mice. Over 100 days, S31A and G34R mice had drastically reduced survival (averaging 77, 81, and 100 days for S31A, G34R, and WT). Furthermore, most G34R and S31A mice developed HGG, while H3.3 WT mice remained tumor-free. Our work implicates CIN as a driver of H3.3 G34 mutant pHGG formation. Our ongoing studies utilize K36M and double mutants to further define the contributions of S31 phosphorylation (CIN) and H3K36me3 (epigenetic gene regulation) to tumorigenesis.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii20-ii20
Author(s):  
Charles Day ◽  
Florina Grigore ◽  
Alyssa Langfald ◽  
James Robinson ◽  
Edward Hinchcliffe

Abstract Histone H3.3 G34R/V mutations are drivers of pediatric high-grade glioma (pHGG). However, the mechanism(s) responsible for G34R/V induced tumorigenesis are unclear. We observed that pHGG cells with H3.3 G34 mutations have significantly reduced phosphorylation at H3.3 S31 as compared to H3.3 WT cell lines. And, in vitro, G34 mutation completely blocks H3.3 S31 phosphorylation by Chk1 – the kinase responsible for S31 phosphorylation. During early mitosis, phospho-S31 is enriched in the chromosomal pericentromere; which plays a vital structural role in chromosome segregation. Over-expression of GFP-H3.3 G34R or non-phosphorylatable GFP-H3.3 S31A in chromosomally stable cell lines results in a significant increase in chromosome mis-segregations. Likewise, H3.3 G34V pHGG derived cells showed a higher frequency of mis-segregation than H3.3 WT cells. During cell division, phospho-S31 is lost in late anaphase. However, when chromosome missegregation occurs, phospho-S31 spreads to the chromosome arms where it stimulates p53 accumulation in G1 – thus acting as a sensor to suppress the proliferation of aneuploid cells. Here we show that cells expressing mutant G34 fail to arrest following mis-segregation, despite having WT p53. Taken together this work demonstrates that the H3.3 G34R/V mutations are sufficient to transform normal, diploid cells into proliferative, chromosomally instable cells. To determine if this process contributes to tumorigenesis, we expressed WT H3.3, H3.3-G34R or H3.3-S31A in a mouse model of pHGG. H3.3 WT controls developed low-grade tumors and all survived 80 days. Mice with H3.3-G34R or H3.3-S31A developed low- and high-grade tumors. And 78% and 50% of H3.3-G34R and H3.3-S31A mice, respectively, survived to 80 days. Our work suggests that H3.3 G34R/V drives chromosomal instability through the suppression of H3.3 S31 phosphorylation AND that chromosomal instability is a contributing driver of glioma formation in G34 mutant tumors.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009868
Author(s):  
Irena Bočkaj ◽  
Tosca E. I. Martini ◽  
Eduardo S. de Camargo Magalhães ◽  
Petra L. Bakker ◽  
Tiny G. J. Meeuwsen-de Boer ◽  
...  

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.


2021 ◽  
Vol 22 (6) ◽  
pp. 2962
Author(s):  
Louise Orcheston-Findlay ◽  
Samuel Bax ◽  
Robert Utama ◽  
Martin Engel ◽  
Dinisha Govender ◽  
...  

The life expectancy of patients with high-grade glioma (HGG) has not improved in decades. One of the crucial tools to enable future improvement is advanced models that faithfully recapitulate the tumour microenvironment; they can be used for high-throughput screening that in future may enable accurate personalised drug screens. Currently, advanced models are crucial for identifying and understanding potential new targets, assessing new chemotherapeutic compounds or other treatment modalities. Recently, various methodologies have come into use that have allowed the validation of complex models—namely, spheroids, tumouroids, hydrogel-embedded cultures (matrix-supported) and advanced bioengineered cultures assembled with bioprinting and microfluidics. This review is designed to present the state of advanced models of HGG, whilst focusing as much as is possible on the paediatric form of the disease. The reality remains, however, that paediatric HGG (pHGG) models are years behind those of adult HGG. Our goal is to bring this to light in the hope that pGBM models can be improved upon.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi27-vi27
Author(s):  
Lawrence Recht ◽  
Reena Thomas ◽  
Sophie Bertrand ◽  
Priya Yerballa ◽  
Gordon Li ◽  
...  

Abstract BACKGROUND High-grade gliomas (HGG) are characterized by dysregulated metabolism, utilizing glycolysis for energy production to support unrestricted growth. BPM 31510, an ubidecarenone (coenzyme Q10) containing lipid nanodispersion, causes a switch in cancer energy sourcing from glycolysis towards mitochondrial oxidative phosphorylation in vitro, reversing the Warburg effect and suggesting potential as an anti-tumor agent. The current study is a phase I study of BPM31510 + vitamin K in GB with tumor growth after bevacizumab (BEV). METHODS This is an open-label phase I study of BPM31510 continuous infusion with weekly vitamin K (10mg IM) in HGG patients using an mTPI design, starting at 110mg/kg, allowing for a single dose de-escalation and 2 dose-escalations. Patients had received first-line ChemoRadiation and were in recurrence following a BEV containing regimen. RESULTS 9 eligible and evaluable patients completed the 28 day DLT period. 8 patients had primary GB, 1 had anaplastic astrocytoma with confirmed pathologic transformation to GB. Median age was 55 years (27–67) and median KPS 70 (60–90) at enrollment. 4 patients were treated at the highest dose 171mg/kg, where there was a single DLT: Grade 3 AST & ALT. The most common grade 1–2 AEs possibly, probably or definitely related to drug were elevated AST, rash, and fatigue, each occurring in 3 patients. Median OS for 9 eligible/evaluable patients was 128 days (95% CI: 48–209) while PFS was 34 days (CI of mean 8.9). 3 patients are currently alive; 2 patients have survived >1 year. PK/PD data are being processed and will be presented. CONCLUSION This study confirms that BPM 31510 + vitamin K is safe and feasible in treatment-refractory HGG patients. Though this study demonstrates safety at 171mg/kg, the proposed dose for future studies in GB, based on additional pre-clinical and non-GB clinical data is 88mg/kg.


Author(s):  
Catalin Folcuti ◽  
Cristina Horescu ◽  
Edmond Barcan ◽  
Oana Alexandru ◽  
Cristian Tuta ◽  
...  

2008 ◽  
Vol 411 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Masato Iida ◽  
Masao Matsuda ◽  
Hideya Komatani

The Plk (polo-like kinase) family is involved in cell-cycle machinery. Despite the possible overlapping involvement of Plk1 and Plk3 in cell-cycle distribution, the precise role of each Plk might be different. To investigate mechanisms that may differentiate their physiological roles, we compared the substrate specificities of Plk1 and Plk3 using synthetic peptides. Among these substrate peptides, topoisomerase IIα EKT1342DDE-containing synthetic peptide was strongly phosphorylated by Plk3 but not by Plk1. By modulating the topoisomerase IIα peptide, we identified residues at positions +1, +2 and +4 as determinants of differential substrate recognition between Plk1 and Plk3. Acidic residues at positions +2 and +4 appear to be a positive determinant for Plk3 but not Plk1. Variation at position +1 appears to be tolerated by Plk3, while a hydrophobic residue at +1 is critical for Plk1 activity. The direct phosphorylation of Thr1342 of topoisomerase IIα by Plk3 was demonstrated with an in vitro kinase assay, and overexpression of Plk3 induced the phosphorylation of Thr1342 in cellular topoisomerase IIα. Furthermore, the physical interaction between Plk3 and topoisomerase IIα was also demonstrated in cells in addition to phosphorylation. These data suggest that topoisomerase IIα is a novel physiological substrate for Plk3 and that Plk1 and Plk3 play different roles in cell-cycle regulation.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3505-3505
Author(s):  
Olivier Rixe ◽  
John Charles Morris ◽  
Robert Wesolowski ◽  
Emrullah Yilmaz ◽  
Richard Curry ◽  
...  

3505 Background: BXQ-350 is a first-in-class agent comprised of Saposin C (SapC) and dioleoyl phosphatidylserine (DOPS). SapC, a multifunctional lysosomal-activator glycoprotein that preferentially interacts with tumor cell phospholipids, has demonstrated anti-tumor effects in both in vitro and in vivo preclinical models. The tolerability and preliminary efficacy of BXQ-350 in the first-in-human study are summarized here. Methods: Eighty-six refractory solid tumor (ST) or high-grade glioma (HGG) patients age ≥18 (36F:50M, age 24-81) were enrolled in a 3-part first-in-human trial (NCT02859857) from 2016-2019 and received at least one dose of BXQ-350. Doses were administered via intravenous infusion during 28-day cycles until disease progression occurred. The previously reported part 1 dose escalation portion of the study (9 HGG, 9 ST patients) established the highest planned dose of 2.4mg/kg as safe but did not identify a maximum tolerated dose. The part 2 expansion cohort treated 37 patients (18 HGG and 19 ST) and an additional part 3 cohort treated 31 ST gastrointestinal (GI) patients, both at the 2.4 mg/kg dose level. Preliminary antitumor activity was evaluated (RECISTv1.1 or RANO). Results: There were no BXQ-350-related serious adverse events, dose limiting toxicities or withdrawals with the exception of 1 allergic type reaction. Three patients (Glioblastoma, Ependymoma, Appendiceal) demonstrated a partial response per RECIST/RANO. Two HGG patients with progressive radiologic enhancement were seen to have treatment effect at surgery, and hence considered to have stable disease. Seven patients (2 HGG, 3 GI, 2 other ST) remain on study and have received treatment for 9+ to 41+ months, with 5 patients treated for > 1 year. A continuing treatment protocol is planned in order to allow these patients to remain on BXQ-350 treatment. Conclusions: BXQ-350 was well tolerated with no significant dose-limiting toxicities at the highest planed dose level. Preliminary results indicate this novel agent demonstrated possible anti-tumor activity in refractory solid tumors and HGG. Clinical trial information: NCT03967093) .


Oncology ◽  
2006 ◽  
Vol 71 (3-4) ◽  
pp. 297-305 ◽  
Author(s):  
Wei Mai ◽  
Katsuyoshi Miyashita ◽  
Abbas Shakoori ◽  
Bin Zhang ◽  
Zhi Wei Yu ◽  
...  

2005 ◽  
Vol 10 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Helmut Mett ◽  
Kerstin Hölscher ◽  
Heidrun Degen ◽  
Christina Esdar ◽  
Birgit Felden De Neumann ◽  
...  

The human cytomegalovirus (HCMV) protein kinase pUL97 represents an important determinant for viral replication and thus is a promising target for the treatment of HCMV. The authors screened a compound library of nearly 5000 entities based on known kinase inhibitors in 2 distinct ways. A radioactive in vitro kinase assay was performed with recombinant pUL97, purified from baculovirus-infected insect cells, on myelin basic protein-coated FlashPlates. About 20% of all compounds tested inhibited pUL97 kinase activity by more than 50% at a concentration of 10 μM. These hits belonged to various structural classes. To elucidate their potential to inhibit pUL97 in a cellular context, all compounds of the library were also tested in a cell-based activity assay. For this reason, a HEK293 cell line was established that ectopically expressed pUL97. When these cells were incubated with ganciclovir (GCV), pUL97 phosphorylated GCV to its monophosphate, which subsequently became phosphorylated to cytotoxic metabolites by cellular enzymes. Thereby, pUL97 converted cells into a GCV-sensitive phenotype. Inhibition of the pUL97 kinase activity resulted in protection of the cells against the cytotoxic effects of GCV. In total, 199 compounds of the library were cellular active at nontoxic concentrations, and 93 of them inhibited pUL97 in the in vitro kinase assay. Among these, promising inhibitors of HCMV replication were identified. The 2-fold screening system described here should facilitate the development of pUL97 inhibitors into potent drug candidates. ( Journal of Biomolecular Screening 2005:36-45)


Sign in / Sign up

Export Citation Format

Share Document