P16.05 Implementation of a novel ex-vivo brain slice model to study human glioblastoma and glioma-associated microglia

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii56-ii57
Author(s):  
C Flüh ◽  
C Nanvuma ◽  
Y Huang ◽  
E Motta ◽  
L Kuhrt ◽  
...  

Abstract BACKGROUND Glioblastoma multiforme is a highly malignant brain tumor with a devastating prognosis. Resection followed by radio-chemotherapy leads to an overall survival of only 15 months. Up to 40% of the tumor mass consist of tumor-associated microglia and macrophages (TAMs). These cells were shown to promote tumor growth and invasiveness in many murine glioma models. The interaction between TAMs and tumor cells is crucial for tumor progression and includes several known pathways. Still, murine glioma models only partially mirror the human tumor microenvironment. Several known genes, which are highly upregulated in human glioma and TAMs are only expressed in human tissue and not in mice. To further investigate some of these genes, we aimed at establishing a humanized ex-vivo brain slice model, in which human TAMs and human glioma cells can be studied in a standardized manner. MATERIAL AND METHODS We used 250 micrometer thick murine brain slices, which were depleted of intrinsic microglia by applying clodoronated liposomes. Next, we inoculated human glioma cells (originating from the cell lines mCherryU87, mCherryU251MG, mCherryLN229 and several patient derived cells lines) with or without human microglia derived from induced pluripotent stem cells (iPSCs). Slices were cultivated for 7 to 14 days. Next, we performed a detailed analysis of microglia morphology (sphericity, cell body volume, process length and branching pattern) and tumor volume. RESULTS Clodronation efficacy was high, depending on duration of treatment and length of cultivation. iPSCs and tumor cells integrated into the slice very well. The presence of tumor cells led to an increased sphericity of iPSC-dervied microglia and to an increased cell body volume. Branching pattern and process length did not differ between both conditions. Tumor volume was significantly larger when iPSC-derived microglia were present. This was found in various glioma cells lines and also in patient derived cells. CONCLUSION The newly established humanized ex-vivo brain slice system was shown to be feasible. The method successfully allows to study the interaction between human TAMs and tumor cells. Microglia foster tumor growth not only in murine glioma models, but also in a human paradigm. The humanized ex-vivo brain slice model therefore is the optimal basis to study the role human-specific genes in TAM-glioma interaction.

2019 ◽  
Vol 20 (18) ◽  
pp. 4643 ◽  
Author(s):  
Le Zhang ◽  
Chen Fu ◽  
Jin Li ◽  
Zizhen Zhao ◽  
Yixue Hou ◽  
...  

Glioma is the most aggressive and lethal brain tumor in humans. Mutations of mitochondrial DNA (mtDNA) are commonly found in tumor cells and are closely associated with tumorigenesis and progress. However, glioma-specific inhibitors that reflect the unique feature of tumor cells are rare. Here we uncover RC-7, a ruthenium complex with strong red fluorescence, could bind with glioma mtDNA and then inhibited the growth of human glioma cells but not that of neuronal cells, liver, or endothelial cells. RC-7 significantly reduced energy production and increased the oxidative stress in the glioma cells. Administration of RC-7 into mice not only could be observed in the glioma mass of brain by fluorescence imaging, but also obviously prevented the growth of xenograft glioma and prolonged mouse survival days. The findings suggested the theranostic application of a novel type of complex through targeting the tumor mtDNA.


2002 ◽  
Vol 19 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Daizo Yoshida ◽  
Kunihiro Watanabe ◽  
Masahiro Noha ◽  
Hiroshi Takahashi ◽  
Akira Teramoto ◽  
...  

Author(s):  
Yoshihira Kimba ◽  
Tatsuya Abe ◽  
Jian Liang Wu ◽  
Ryo Inoue ◽  
Minoru Fukiki ◽  
...  

2007 ◽  
Vol 6 (1) ◽  
pp. 42 ◽  
Author(s):  
Pabbisetty Kumar ◽  
Anjali Shiras ◽  
Gowry Das ◽  
Jayashree C Jagtap ◽  
Vandna Prasad ◽  
...  

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhaohui Li ◽  
Han Wang ◽  
Jun Wei ◽  
Liang Han ◽  
Zhigang Guo

Abstract Glioma causes significant mortality across the world and the most aggressive type of brain cancer. The incidence of glioma is believed to increase in the next few decades and hence more efficient treatment strategies need to be developed for management of glioma. Herein, we examined the anticancer effects of Indirubin against a panel of human glioma cells and attempted to explore the underlying mechanisms. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that Indirubin could inhibit the growth of all the glioma cells but the lowest IC50 of 12.5 µM was observed against the U87 and U118 glioma cells. Additionally, the cytotoxic effects of Indirubin were comparatively negligible against the normal astrocytes with an IC50 of > 100 µM. Investigation of mechanism of action, revealed that Indirubin exerts growth inhibitory effects on the U87 and U118 glioma cells by autophagic and apoptotic cell death. Annexin V/PI staining assay showed that apoptotic cell percentage increased dose dependently. Apoptosis was associated with increase in Bax decrease in Bcl-2 expressions. Additionally, the expression of autophagic proteins such as LC3II, ATG12, ATG15 and Beclin 1 was also increased. Wound heal assay showed that Indirubin caused remarkable decrease in the migration of the U87 and U118 cells indicative of anti-metastatic potential of Indirubin. Taken together, these results suggest that Indirubin exerts potent anticancer effects on glioma cells and may prove essential in the management of glioma.


Sign in / Sign up

Export Citation Format

Share Document