IMMU-34. CAMKK2 PROMOTES AN IMMUNOSUPPRESSIVE PROGRAM AND CHECKPOINT BLOCKADE RESISTANCE IN THE GLIOBLASTOMA TUMOR MICROENVIRONMENT

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi100-vi100
Author(s):  
William Tomaszewski ◽  
Jessica Waibl-Polania ◽  
Luigi Racioppi ◽  
Luis Sanchez-Perez ◽  
Gunn Michael ◽  
...  

Abstract BACKGROUND Immunotherapy has demonstrated efficacy in several cancers but has shown only modest effects in Glioblastoma (GBM). This is linked to the anti-inflammatory nature of the tumor microenvironment (TME) and the pro-tumor functions of brain native cells. Targeting stromal cells, such as tumor associated macrophages (TAMs) and neurons, is a promising approach. Re-analysis of human and murine brain single cell-RNAseq (scRNAseq) datasets shows Calmodulin Dependent Kinase Kinase 2 (CaMKK2) is highly expressed in both neurons and TAMs. Loss of CaMKK2 polarizes TAMs to an immunostimulatory phenotype and reduces pro-tumor neuronal functions. Thus, we hypothesize that CaMKK2 promotes the pro-tumor nature of the GBM TME and immunotherapy resistance. RESULTS Murine GBM was orthotopically implanted into wild-type and CaMKK2-/- mice. CaMKK2-/- mice exhibited significantly prolonged survival. To determine if anti-tumor immune function was enhanced, we probed the TME using flow cytometry and scRNAseq. CaMKK2-/- mice showed increased abundance of precursor exhausted, potentially immune checkpoint blockade (ICB) responsive, CD8 T cells. Furthermore, T cell depletion abrogated the survival benefit observed in CaMKK2-/- mice. Considering these T cell phenotypes, we treated CaMKK2-/- mice with ICB, and indeed they were sensitive. To determine if the CaMKK2-/- survival phenotype and ICB response depended on CaMKK2 expression in hematopoietic or in non-hematopoietic cells, we utilized a reciprocal chimera model. Loss of CaMKK2 in the non-hematopoietic cells was more vital for survival and ICB response than in hematopoietic cells, suggesting a potential novel and unique role for CaMKK2 in brain native cells - potentially neurons - in coordinating ICB resistance. CONCLUSIONS We find that CaMKK2 exacerbates mortality and drives ICB resistance by limiting the anti-tumor response in GBM via both hematopoietic and brain native cells. Our findings identify a novel therapeutic target for GBM, and a unique role for CaMKK2 in the TME.

2003 ◽  
Vol 124 (4) ◽  
pp. A318-A319
Author(s):  
Henri Braat ◽  
Jan Van Den Brande ◽  
Esther De Jong ◽  
A. Van Bodegraven ◽  
Martien Kapsenberg ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2021 ◽  
Author(s):  
Evgeny Kiner ◽  
◽  
Elijah Willie ◽  
Brinda Vijaykumar ◽  
Kaitavjeet Chowdhary ◽  
...  

2021 ◽  
Vol 2 (6) ◽  
pp. 100322
Author(s):  
Laura E. Richert-Spuhler ◽  
Corinne M. Mar ◽  
Paurvi Shinde ◽  
Feinan Wu ◽  
Ting Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document