scholarly journals P11.40 Development of an implantable multifunctional biodevice (GlioGel) in the treatment of recurrent glioblastoma

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii52-iii52
Author(s):  
L Déry ◽  
G Charest ◽  
M Akbari ◽  
D Fortin

Abstract BACKGROUND Glioblastoma (GBM) is a devastating disease with a median survival of 14–16 months. This poor prognosis can be explained by 3 factors. First, the infiltrative nature of the disease prohibits a complete removal of the tumor. Second, some of the tumor cells are brain tumor stem cells, which are highly migratory and highly resistant to treatments. Finally, the presence of the blood-brain barrier prohibits entry of therapeutics. This situation implies that new treatment approaches must be directed toward the infiltrated brain surrounding the resection cavity. To bypass this problem and improve the potency of adjuvant treatment, we have designed a new “GlioGel-device” that will have the ability to: 1- attract the migrating tumor cells into or nearby the device, and 2- subsequently deliver chemotherapy to the locally pooled tumor cells and 3- irradiate these cells with radioisotopes embedded in the GlioGel. MATERIAL AND METHODS In vitro proof of principle of chemoattraction was investigated by agarose drops method releasing chemokines molecules (CCL2, CCL11, CXCL10) with F98 and U87MG GBM cells. In vivo experiments evaluated the efficiency of chemokines and doxorubicin released by the implanted GlioGel on the tumor behaviour in our Fischer-F98 rat glioma model. An histology of tumour behaviour exposed to chemokines and survival of GBM rats treated with doxorubicin were analysed. RESULTS In vitro preliminary results for chemoattraction assays show that up to 2 times more cells invade the gel when it releases chemoattractant compared to PBS. The In vivo chemotherapy experiments with a fast, medium and slow release of doxorubicin from the GlioGel show that a local dose that represent a 1300-fold smaller dose than a normal intravenous systemic dose gave a significant reduction in tumour growth (median survival) compared to a control group. We investigated the effect provided by the GlioGel impregnated with chemokines on tumor cells migration, after implantation in the Fischer-F98 rat glioma model. CONCLUSION This preliminary study shows the ability of GlioGel releasing chemokines and doxorubicin to respectively attract and kill orthotopic glioblastoma cells. These encouraging results will be completed with a combination of short-range (high LET) radiation by embedded radioisotope into the GlioGel aiming for synergistic combination to eradicate as much tumour cells as possible, while limiting systemic side effects.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


Author(s):  
Patrycja Guzik ◽  
Klaudia Siwowska ◽  
Hsin-Yu Fang ◽  
Susan Cohrs ◽  
Peter Bernhardt ◽  
...  

Abstract Purpose It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. Methods In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 μg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. Results [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. Conclusion Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1727-1727
Author(s):  
Manuel Schmidt ◽  
Javier de Cristobal ◽  
Astrid Sander ◽  
Bernadette Brzezicha ◽  
Sven A. König Merediz ◽  
...  

Abstract Cytosine-guanine (CpG) motifs containing oligonucleotides (ODN) are commonly used for immunomodulatory purpose in cancer therapy and for the treatment of allergic diseases since they resemble bacterial DNA and serve as “danger signals”. These CpG-ODNs promote predominately a TH1-response with secretion of IL-12 and IFN-γ, In addition their broad potential includes activation of B-cell proliferation, monocyte stimulation and secretion of IgM and IL-6, and stimulation of plasmacytoid DC to produce IFN-α/-β and thus γδT-cells and NK-cells to express CD69 and secrete IFN-γ. Usually phosphorothioate (PS) modifications are to enhance the stability, but these are leading to several side-effects, like severe organ enlargements, morphological changes and immunosuppression in mice. We designed immunomodulatory molecules based on short covalently-closed dumbbell-like structures (dSLIM) to stabilize the DNA without the otherwise necessary PS-modification. To evaluate the anti-tumor effect of the dSLIM molecules we developed an in vitro anti-tumor assay. This assay uses supernatant from dSLIM-activated human PBMCs for incubation with tumor cells in vitro. We observed increased apoptosis and necrosis of the HT-29 tumor cell line after incubation with supernatant from dSLIM-treated PBMC which was significantly higher than the effect of supernatant from non-treated PBMC. In addition, supernatant from dSLIM-treated PBMC increased the expression of HLA-ABC on the tumor cells, a pre-requisite for tumor cell recognition by the immune system. These effects were confirmed with human HEK293 and murine Renca cell lines. Analyzing the effect with neutralizing antibodies to various apoptosis-related cytokines, we observed a crucial role of IFN-γ but not IFN-α or TNFα. To investigate the anti-tumor effects of dSLIM in vivo, we employed a SKH1 murine model which is prone to spontaneous development of papillomas. Using chemicals for initiation and weekly promotion of de novo papilloma development we compared groups of weekly s.c. or i.p. dSLIM injections, respectively, with the PBS control group. The number of papilloma developing mice was significantly lower in the dSLIM groups and the total number of papillomas on all mice was reduced by approximately 50%. In conclusion, we showed that dSLIM immunomodulators exhibit potent anti-tumor effects in vitro and in vivo.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5658-5658
Author(s):  
Mariana Bleker de Oliveira ◽  
Angela Isabel Eugenio ◽  
Veruska Lia Fook Alves ◽  
Daniela Zanatta ◽  
Mihoko Yamamoto ◽  
...  

Abstract Introduction: HSP70 has an integrative role in protein degradation due to the interaction with many pathways, such as ubiquitin proteasome (UPS), unfolded protein response (UPR) and autophagy. In multiple myeloma (MM) HSP70 is overexpressed and helps to prevent proteotoxic stress and cell death caused by overload of unfolded/misfolded proteins produced by tumor cells. Aims: To explore the role of HSP70 inhibition, isolated or in association with proteasome inhibitor, as therapeutic strategy for MM through in vitro and in vivo analyses. Methods: RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines were treated with HSP70 inhibitor (VER155008- 50 μM or 80μM) and proteasome inhibitor (bortezomib 100nM) for evaluation of apoptosis induction by flow cytometry using annexin V and propidium iodide. NOD.Cg-rkdcscid Il2rgtm1Wjl/SzJ immunodeficient mice were used for plasmacytoma xenograft model and treated with intravenous VER155008 (40mg/kg) and bortezomib (1mg/kg), immediately after transplant of RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines (N=3 for each group, including controls, bortezomib, VER155008, and combination of bortezomib and VER155008). Bioluminescence was measured in IVIS Kinetic (Capiler Life Science) once a day for seven days. Results: Bortezomib used as single treatment was able to induce apoptosis in RPMI8226-LUC-PURO cell line: the best result for in vitro studies RPMI8226-LUC-PURO was 65% of late apoptosis after treatment with bortezomib. On the other hand, U266-LUC-PURO cell line presented higher percentage of apoptosis when treated with bortezomib and VER155008 combination: U266-LUC-PURO cell line presented more than 60% of late apoptosis after VER155008 (80μM) combined with bortezomib, showing that inhibition of HSP70 could overcome U266-LUC-PURO resistance to bortezomib alone. Mice treated with VER155008, alone or in combination with bortezomib, showed complete inhibition of tumor growth (absence of bioluminescence) for both cell lines when compared with control group after one week of treatment (p<0.001, Two-way ANOVA). Therefore, in vivo studies using mice treated with VER155008, alone or in combination with bortezomib, prevented tumor development after one week of treatment, independent of the cell line used in the xenotransplant. Conclusion: Our study shows that HSP70 and proteasome inhibitors combination induced apoptosis in tumor cells in vivo for both MM cell lines. Since HSP70 is overexpressed in MM and connects several signaling pathways that maintain cell survival, such as UPS, UPR and autophagy, it can represent a key role to establish a new approach for the treatment of MM. Financial support: FAPESP 2010/17668-6 and CNPq (155272/2013-6). UNIFESP Ethics Committee (0219/12). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1514-1514
Author(s):  
Enrique M. Ocio ◽  
David Vilanova ◽  
Laura San-Segundo ◽  
Patricia Maiso ◽  
Mercedes Garayoa ◽  
...  

Abstract Introduction Panobinostat (LBH589) is a novel histone deacetylase (HDAC) inhibitor being evaluated in clinical trials in hematological and solid malignancies. In multiple myeloma (MM), investigators have demonstrated its in vitro antimyeloma effect in cell lines and patients cells. Cancer treatment is typically based on the concept of combining agents with different mechanisms of action to overcome drug resistance. This was the rationale of the present study in which the in vitro and in vivo benefit of combinations of pabinostat with conventional antimyeloma agents has been explored. Material and Methods The potential in vitro synergism of pabinostat with 6 antimyeloma agents (melphalan, doxorubicin, dexamethasone, thalidomide, lenalidomide, bortezomib) was analyzed in MM1S cell line. The two most favorable combinations were tested in 120 NOD/SCID mice implanted with a human subcutaneous plasmocytoma. Mice were randomized into 12 treatment groups. Drugs were given ip, 5 days/week × 7 weeks. Doses were: pabinostat: 10 mg/Kg × 3 weeks and 5 mg/Kg afterwards; dexamethasone (D): 1 mg/Kg; bortezomib (B): 0.1 mg/Kg; and lenalidomide (L): 15 mg/Kg. Tumor volumes clinical features and weight were monitored three times a week. Mice were sacrificed when their tumors reached 2 cm. Immunohistochemistry was performed in selected tumors. Results Three agents potentiated the effect of pabinostat in vitro: bortezomib, dexamethasone and, to a lesser extent, lenalidomide. Moreover, the triple combination of pabinostat+L+D and pabinostat+B+D resulted in high synergistic activity. These studies provided the rationale for testing these combinations in vivo: Single agent pabinostat at a dose of 10 mg/Kg completely abrogated the growth of plasmocytomas without significant toxicity. In fact, after three weeks of treatment, the median volume of tumors in the pabinostat group was 163±75 mm3 as compared to 1891±1182 mm3 in the control group (p=0.001). Immunohistochemistry of pabinostat treated tumors revealed a decrease in BrdU uptake, an increase in histone acetylation and phosphorylation of H2AX suggesting DNA damage. This antiproliferative action was associated with survival advantage: median survival 70±1.8 vs 30±2.1 days (p&lt;0.001) for the pabinostat and vehicle treated groups respectively. Subsequently the dose of pabinostat was decreased by 50% in order to gain further insights into the potential advantage of the combinations. Interestingly, the addition of D and suboptimal doses of either B or L significantly improved the antimyeloma effect of pabinostat. In this sense, median survival increased up to 86±2.6 days in pabinostat+D+B (p&lt;0.001) and 88±1.2 days for pabinostat+D+L (p&lt;0.001). The efficacy of these triple combinations was significantly higher than any of the respective double combinations (pabinostat+D; pabinostat+B; pabinostat+L; B+D; L+D). Some of these combinations (including or not pabinostat) initially induced a slight toxicity (5%–15% body weight loss) which spontaneously recovered after the third week of treatment. Conclusion Combinations of pabinostat + dexamethasone with either bortezomib or lenalidomide are safe and display promising antimyeloma efficacy. This study provides the rationale for the clinical development of triple combinations of these drugs to improve the outcome of MM patients.


Neurosurgery ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Frank P. Holladay ◽  
Grisel Lopez ◽  
Mamata De ◽  
Robert A. Morantz ◽  
Gary W. Wood

2019 ◽  
Vol 3 (7) ◽  
pp. 1092-1102 ◽  
Author(s):  
Barbara Costa ◽  
Tanja Eisemann ◽  
Jens Strelau ◽  
Ingrid Spaan ◽  
Andrey Korshunov ◽  
...  

Abstract Binding of the sialomucin-like transmembrane glycoprotein podoplanin (PDPN) to the platelet receptor C-type lectin-like receptor 2 induces platelet activation and aggregation. In human high-grade gliomas, PDPN is highly expressed both in tumor cells and in tumor-associated astrocytes. In glioma patients, high expression of PDPN is associated with worse prognosis and has been shown to correlate with intratumoral platelet aggregation and an increased risk of venous thromboembolism (VTE). To functionally assess the role of PDPN in platelet aggregation in vivo, we established a syngeneic orthotopic murine glioma model in C57/Bl6 mice, based on transplantation of p53- and Pten-deficient neural stem cells. This model is characterized by the presence of intratumoral platelet aggregates and by the upregulation of PDPN both in glioma cells and in astrocytes, reflecting the characteristics of human gliomas. Deletion of PDPN either in tumor cells or in astrocytes resulted in glioma formation with similar penetrance and grade compared with control mice. Importantly, only the lack of PDPN in tumor cells, but not in astrocytes, caused a significant reduction in intratumoral platelet aggregates, whereas in vitro, both cell types have similar platelet aggregation-inducing capacities. Our results demonstrate a causative link between PDPN and platelet aggregation in gliomas and pinpoint the tumor cells as the major players in PDPN-induced platelet aggregation. Our data indicate that blocking PDPN specifically on tumor cells could represent a novel strategy to prevent platelet aggregation and thereby reduce the risk of VTE in glioma patients.


Neurosurgery ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Frank P. Holladay ◽  
Grisel Lopez ◽  
Mamata De ◽  
Robert A. Morantz ◽  
Gary W. Wood

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5527-5527
Author(s):  
Manuel Schmidt ◽  
Javier de Cristobal ◽  
Astrid Sander ◽  
Bernadette Brzezicha ◽  
Sven A. Koenig-Merediz ◽  
...  

Abstract Cytosine-guanine (CpG) motifs containing oligonucleotides (ODN) are commonly used for immunomodulatory purpose in cancer therapy and for the treatment of allergic diseases since they resemble bacterial DNA and serve as “danger signals”. These CpG-ODNs promote predominately a TH1-response with secretion of IL-12 and IFN-γ, In addition their broad potential includes activation of B-cell proliferation, monocyte stimulation and secretion of IgM and IL-6, and stimulation of plasmacytoid DC to produce IFN-α/-β and thus γδT-cells and NK-cells to express CD69 and secrete IFN-γ. Usually phosphorothioate (PS) modifications are to enhance the stability, but these are leading to several side-effects, like severe organ enlargements, morphological changes and immunosuppression in mice. We designed immunomodulatory molecules based on short covalently-closed dumbbell-like structures (dSLIM) to stabilize the DNA without the otherwise necessary PS-modification. To evaluate the anti-tumor effect of the dSLIM molecules we developed an in vitro anti-tumor assay. This assay uses supernatant from dSLIM-activated human PBMCs for incubation with tumor cells in vitro. We observed increased apoptosis and necrosis by the HT-29 tumor cell line after incubation with supernatant from dSLIM-treated PBMC which was significantly higher than the effect of supernatant from non-treated PBMC. In addition, supernatant from dSLIM-treated PBMC increased the expression of HLA-ABC on the tumor cells, a pre-requisite for tumor cell recognition by the immune system. These effects were confirmed with human HEK293 and murine Renca cell lines. Analyzing the effect with neutralizing antibodies to various apoptosis-related cytokines, we observed a crucial role of IFN-γ but not IFN-α or TNFα. To investigate the anti-tumor effects of dSLIM in vivo, we employed a SKH1 murine model which is prone to spontaneous development of papillomas. Using chemicals for initiation and weekly promotion of de novo papilloma development we compared groups of weekly s.c. or i.p. dSLIM injections, respectively, with the PBS control group. The number of papilloma developing mice was significantly lower in the dSLIM groups and the total number of papillomas on all mice was reduced by approximately 50%. In conclusion, we showed that dSLIM immunomodulators exhibit potent anti-tumor effects in vitro and in vivo.


2010 ◽  
Vol 6 (1) ◽  
pp. 92-97 ◽  
Author(s):  
I-Mei Siu ◽  
Betty M. Tyler ◽  
James X. Chen ◽  
Charles G. Eberhart ◽  
Ulrich-Wilhelm Thomale ◽  
...  

Object Diffuse brainstem tumors are the most difficult type of pediatric CNS malignancy to treat. These inoperable lesions are treated with radiation alone or in combination with chemotherapy, and the survival rate is less than 10%. It is therefore essential to develop a reliable animal model to screen new therapeutic agents for the treatment of this type of tumor. Methods A multipotent human glioblastoma stemlike neurosphere line, 060919, was established from a surgically resected glioblastoma specimen; when cells were implanted intracranially into athymic nude mice, they formed invasive, vascular tumors that exhibited the features of glioblastoma. Ten female Fischer 344 rats received an injection of 75,000 F98 rat glioma cells and 10 female athymic nude rats received an injection of 75,000 060919 human glioblastoma stemlike cells in the pontine tegmentum of the brainstem. A control group of 5 female Fischer rats received an injection of saline in the same location as the animals in the tumor groups. Kaplan-Meier curves were generated for survival, and brains were processed postmortem for histopathological investigation. Results Both F98 cells and 060919 cells grew in 100% of the animals injected. Median survival of animals injected with F98 was 15 days, consistent with the authors' previous reports on the establishment of the brainstem tumor model using the F98 rat glioma line. Median survival of animals injected with 060919 was 31 days. Histopathological analysis of the tumors confirmed the presence of brainstem lesions in animals that received brainstem injections of F98 and in animals that received brainstem injections of 060919. The 060919 brainstem tumors histologically resembled glioblastoma. Conclusions Tumor take and median survival were consistent for animals injected in the brainstem with either the established F98 rat glioma cell line or the 060919 human glioblastoma stemlike neurosphere line. Histopathological features of the 060919 brainstem tumors resembled glioblastoma. Establishment of this human glioblastoma stemlike brainstem animal model will improve the evaluation and identification of more efficacious agents for the treatment of high-grade brainstem tumors.


Sign in / Sign up

Export Citation Format

Share Document