scholarly journals TMIC-57. PRO-TUMORAL EFFECTS OF INTRA-TUMORAL NEUTROPHILS IN THE GLIOBLASTOMA MICROENVIRONMENT

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi260-vi260
Author(s):  
Sumedh Shah ◽  
Garima Yagnik ◽  
Alan Nguyen ◽  
Harsh Wadhwa ◽  
Jordan Spatz ◽  
...  

Abstract While macrophage enrichment and lymphocyte depletion have been described in glioblastoma, intratumoral neutrophils and their effect on glioblastoma have been under-characterized. While tumor-associated neutrophils (TANs) were initially regarded as passive bystanders due to their short-lived nature, investigation of TANs in other cancer types revealed pro-tumoral roles. Therefore, we sought to characterize TANs in the glioblastoma microenvironment using transcriptomic analysis and define their oncologic effects. Flow cytometric analysis of patient samples for neutrophils (CD11b+/CD15+/CD66b+) revealed higher percentages of TANs in glioblastoma compared to low-grade gliomas (1.76% [n=13] vs. 0.33% [n=6], p=0.03). Using the Transwell migration assay with glioblastoma tumor conditioned-media (CM), we found that recruitment of circulating neutrophils to tumor sites is mediated by leukotriene-B4 chemoattraction and that this interaction can be blocked with the addition of LtB4 receptor antagonist, LY293111. TANs were morphologically activated, unlike circulating neutrophils from GBM patients (P< 0.05) and, while not intravascular, were close to blood vessels. We performed single-cell RNA sequencing of isolated TANs and found a distinct transcriptomic profile relative to circulating neutrophils from these patients, particularly upregulated osteopontin. Osteopontin concentration was significantly higher in TAN CM than in patient-matched peripheral blood neutrophil CM (3.2ng/mL [n=3] vs. 0.02ng/mL [n=3], p< 0.05). Because osteopontin is linked to GBM stem cell-like phenotype maintenance and TANs localized to the perivascular niche where GBM stem cells reside, we investigated TAN-GBM stem cell interactions and osteopontin as a potential mediator. We found TAN CM increased proliferation and stem cell markers (Nanog, Oct4, Sox2) of stem cell-containing GBM neurospheres (p< 0.01). These effects were blocked by osteopontin-neutralizing antibodies (p< 0.01). Our work defines neutrophil-mediated pro-tumoral effects and their mechanisms and identifies a novel approach to target GBM stem cells—by disrupting the immune cell mediators that create their supportive microenvironment in the perivascular niche.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A758-A758
Author(s):  
Duong Nguyen ◽  
Alberto Gomez ◽  
Forrest Neuharth ◽  
Ashley Alamillo ◽  
Thomas Herrmann ◽  
...  

BackgroundOncolytic virotherapy has been recognized as a promising new therapy for cancer for decades but only few viruses have been approved worldwide. The therapeutic potential of oncolytic viruses can be severely restricted by innate and adaptive immune barriers making oncolytic virus clinically inefficient. To overcome this obstacle, we utilized adipose-derived stem cells (AD-MSC) loaded with tumor selective CAL1 oncolytic vaccinia virus to generate a new therapeutic agent called SNV1 (SuperNova-1).MethodsCAL1 vaccinia virus was tested for its ability to replicate and selectively kill various human cancer cell lines in vitro and in vivo. Additionally, CAL1 was loaded into adipose-derived mesenchymal stem cells to generate SuperNova1 (SNV1). Both CAL1 and SNV1 were tested for their ability to kill cancer cells in the presence of active complement and neutralizing antibodies in cell culture as well as in mice. Immune cell infiltration of the treated and untreated tumors was analyzed by flow cytometry.ResultsCAL1 showed preferential amplification and killed various tested human (PC3, FaDu, MDA-MB-231, RPMI) and mouse cancer cells (CT26, EMT6, TRAMP-C2, RM1). In animals, CAL1 caused tumor regression in PC3 and CT26 mouse models without signs of toxicity. SNV1 significantly enhanced protection of CAL1 virus from clearance by the immune system as compared to naked CAL1 virus, leading to higher therapeutic efficacy in animals. Five days after SNV1 administration, tumor infiltrating lymphocytes (TILs) from both treated and untreated tumors showed increased CD4 and CD8 T-cell infiltrations. Importantly, we documented a decreased frequency of Tregs, and improved effector to Treg ratios, which was associated with inhibition of tumor growth at the treated tumor site and also at distant untreated sites.ConclusionsCAL1 is potentially used as an oncolytic agent. In addition, SNV1 cell-based platform protects and potentiates oncolytic vaccinia virus by circumventing humoral innate and adaptive immune barriers, resulting in enhanced oncolytic virotherapy. Particularly, SNV1 provided instantly active viral particles for immediate infection and simultaneous release of therapeutic proteins in the injected tumors.


2010 ◽  
Vol 289 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Shaker A. Mousa ◽  
Thangirala Sudha ◽  
Evgeny Dyskin ◽  
Usawadee Dier ◽  
Christine Gallati ◽  
...  

Microscopy ◽  
2021 ◽  
Author(s):  
Nobuyuki Koike ◽  
Jun Sugimoto ◽  
Motonori Okabe ◽  
Kenichi Arai ◽  
Makiko Nogami ◽  
...  

Abstract Amnion membrane studies related to miscarriage have been conducted in the field of obstetrics and gynecology. However, the distribution of stem cells within the amnion and the differences in the properties of each type of stem cells are still not well understood. We address this gap in knowledge in the present study where we morphologically classified the amnion membrane, and we clarified the distribution of stem cells here to identify functionally different amniotic membrane–derived stem cells. The amnion can be divided into a site that is continuous with the umbilical cord (region A), a site that adheres to the placenta (region B), and a site that is located opposite the placenta (region C). We found that human amnion epithelial stem cells (HAECs) that strongly express stem cell markers were abundant in area A. HAEC not only expressesed stem cell-specific surface markers TRA-1-60, Tra-1-81, SSEA4, SSEA3, but was also OCT-3/4 positive and had alkaline phosphatase activity. Human amniotic mesenchymal stem cells expressed KLF-A, OCTA, Oct3/4, c-MYC and Sox2 which is transcription factor. Especially, in regions A and B they have expressed CD73, and the higher expression of BCRP which is drug excretion transporter protein than the other parts. These data suggest that different types of stem cells may have existed in different area. The understanding the relation with characteristics of the stem cells in each area and function would allow for the efficient harvest of suitable HAE and HAM stem cells as using tool for regenerative medicine.


1996 ◽  
Vol 91 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P. H. Jones

1. The keratinocytes in human epidermis are constantly turned over and replaced by a population of stem cells located in the basal epidermal layer. Until recently there were no markers allowing the isolation of viable epidermal stem cells. However, it has now been shown that epidermal stem cells can be isolated both in vitro and direct from the epidermis as they express high levels of functional β1 integrin family receptors for extracellular matrix proteins. 2. The evidence for integrins as stem cell markers and the insights that have been gained into stem cell behaviour are reviewed.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1134
Author(s):  
Julia I. Khorolskaya ◽  
Daria A. Perepletchikova ◽  
Daniel V. Kachkin ◽  
Kirill E. Zhurenkov ◽  
Elga I. Alexander-Sinkler ◽  
...  

The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.


Author(s):  
Silmi Mariya

The mammary gland contains adult stem cells that are capable of self-renewal.  This population plays an important role in the development of mammary gland and breast cancer pathogenesis. The studies of mammary stem cells are limited due to the difficulty to acquire and expand adult stem cell population in an undifferentiated state. In this study, we developed mammosphere cultures of nulliparous cynomolgus monkeys (Macaca fascicularis; Mf) as a culture system to enrich mammary stem cells. This species has similarity of mammary gland structure as humans including anatomy, developmental stages, and lobule profile of mammary gland. The use of stem cells from primate animals is essential to bridge the knowledge gaps resulting from stem cell research using rodents for clinical trials in human. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured as monolayer and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for mammary stem cells was evaluated using qPCR. Cells were further differentiated with 3D approaches to evaluate morphology and organoid budding. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. The 3D differentiation in matrigel allowed for organoid formation. Mammary gland stem cells have been successfully differentiated which characterized by CSN2 marker expression and differentiation regulators marker STAT5 and GATA3. The results indicate that mammospheres can be successfully developed derived from breast tissue of nulliparous Mf collected via surgical biopsy. As the mammosphere allows for enrichment of mammary stem cell population, the findings also suggest that a 3-dimensional system is efficient as in-vitro model to study mammary stem cells and a useful system to study mammary differentiation in regards to cancer prevention.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Albert Spicher ◽  
Andrea Meinhardt ◽  
Marc-Estienne Roehrich ◽  
Giuseppe Vassalli

Identification of stem cells based on hematopoietic stem cell (HSC) surface markers, such as stem cell antigen-1 (Sca-1) and the c-kit receptor, has limited specificity. High aldehyde-dehydrogenase (ALDH) activity is a general cellular property of stem cells shared by HSC, neural, and intestinal stem cells. The presence of cells with high ALDH activity in the adult heart has not been investigated. Methods: Cells were isolated from adult mouse hearts, and from atrial appendage samples from humans with ischemic or valvular heart disease. Myocyte-depleted mouse Sca-1+, and lineage (Lin)-negative/c-kit+ human heart cells were purified with immunomagnetic beads. ALDH-high cells were identified using a specific fluorescent substrate, and sorted by FACS. Cell surface marker analysis was performed by flow cytometry. Results: Myocyte-depleted mouse heart cells contained 4.8+/−3.2% ALDH-high/SSC-low and 32.6+/−1.6% Sca-1+ cells. ALDH-high cells were Lin-negative, Sca-1+ CD34+ CD105+ CD106+, contained small CD44+ (27%) and CD45+ (15%) subpopulations, and were essentially negative for c-kit (2%), CD29, CD31, CD133 and Flk-1. After several passages in culture, ~20% of ALDH-high cells remained ALDH-high. Myocyte-depleted human atrial cells contained variable numbers of ALDH-high cells ranging from 0.5% to 11%, and 4% Lin-negative/c-kit+ cells. ALDH-high cells were CD29+ CD105+, contained a small c-kit+ subpopulation (5%), and were negative for CD31, CD45 and CD133. After 5 passages in culture, the majority of ALDH-high cells remained ALDH-high. Conclusions: Adult mouse and human hearts contain significant numbers of cells with high ALDH activity, a general cellular property that stem cells possess in different organs, and express stem cell markers (Sca-1 and CD34 in the mouse). The immunophenotype of cardiac-resident ALDH-high cells differs from that previously described for bone marrow ALDH-high HSC, and suggests that this cell population may be enriched in mesenchymal progenitors. Analysis of lineage differentiation potential of ALDH-high cells is in progress. ALDH activity provides a new, practical approach to purifying cardiac-resident progenitor cells.


1997 ◽  
Vol 45 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Jean-Pierre Molès ◽  
Fiona M. Watt

The basal layer of the epidermis contains two types of proliferating keratinocyte: stem cells, with high proliferative potential, and transit amplifying cells, which are destined to undergo terminal differentiation after a few rounds of division. It has been shown previously that two- to three-fold differences in the average staining intensity of fluorescein-conjugated antibodies to β1 integrin subunits reflect profound differences in the proliferative potential of keratinocytes, with integrin-bright populations being enriched for stem cells. In the search for additional stem cell markers, we have stained sections of normal human epidermis with antibodies to proteins involved in intercellular adhesion and quantitated the fluorescence of individual cell-cell borders. In the basal layer, patches of brightly labeled cells were detected with antibodies to E-cadherin, β-catenin, and γ-catenin, but not with antibodies to P-cadherin, α-catenin, or with pan-desmocollin and pan-desmoglein antibodies. In the body sites examined, palm and foreskin, integrinbright regions were strongly labeled for γ-catenin and weakly labeled for E-cadherin and β-catenin. Our data suggest that there are gradients of both cell-cell and cell-extracellular matrix adhesiveness within the epidermal basal layer and that the levels of E-cadherin and of β-and γ-catenin may provide markers for the stem cell compartment, stem cells expressing relatively higher levels of γ-catenin and lower levels of E-cadherin and β-catenin than other basal keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document