Local 3-Dimensional Printing of a Calvarium-Anchored Ventricular Catheter Occlusion Device

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Tyler S Cole ◽  
Dakota T Graham ◽  
Andre A Wakim ◽  
Michael A Bohl ◽  
Clinton D Morgan ◽  
...  

ABSTRACT Three-dimensional (3D)-printed objects have been incorporated into many surgical specialties for various purposes. These devices can be customized and used as implants or surgical instruments. This study describes the use of a 3D-printed device that eliminates the need for a surgical assistant to occlude and retain the intracranial catheter during ventriculoperitoneal shunt creation and revision. After we identified design considerations and solutions, we modeled the device dimensions using computer-aided design software. Prototypes were 3D printed using stereolithography. Iterative design improvements were tested on cadaveric cranial samples. A final design was established, prepared by the in-hospital sterile processing department, and deployed successfully for clinical use. The design process for 3D-printed surgical instruments can produce straightforward idea-to-prototype pipelines. Because 3D-printed devices are easily duplicated and modified, small adjustments and new models can be developed, printed, and tested in a short time span.

2020 ◽  
Vol 9 (3) ◽  
pp. 832 ◽  
Author(s):  
Dave Chamo ◽  
Bilal Msallem ◽  
Neha Sharma ◽  
Soheila Aghlmandi ◽  
Christoph Kunz ◽  
...  

The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.


2016 ◽  
Vol 23 (6) ◽  
pp. 613-619 ◽  
Author(s):  
Dimitrios Paraskevopoulos

Objective. Aim of this study was to develop a prototype for an innovative, burr-hole mounted device, for stabilizing endoscopes during intracranial surgery. The objective was an easily maneuverable device, freeing one hand without compromising flexibility and safety. This could avoid the need for a second surgeon or a bulky holder, thus improving coordination. Methods. The initial concept arose from the observation that intraventricular endoscopy is often performed by 2 surgeons, 1 navigating the endoscope and 1 inserting/handling instruments through the working channel. A specification analysis was performed. Desired properties were specified through a literature review, as well as informal interviews with surgeons and engineers. Tools used for the design included blueprints, 3-dimensional computer aided-design and cooperating with engineers. The final prototype was 3D-printed and the toruses were produced with molding. Results. A prototype named BuESta (Burr hole Endoscope Stabililizer) was produced. This consists of 2 half hollow sphere parts and interchangeable toruses and has the following features: easy to produce, inexpensive, not prolonging surgical time, semirigid, variable fixation, easy to fix/release, safe, no bulky articulated arms, mimicking basic concepts of second hand fixation (index finger/thumb fixation, hand resting/stabilizing on skull). Conclusions. This work represents a feasibility study including specification analysis, design and prototyping of a novel Burr hole endoscope stabilizing device. The device offers variable support for the endoscope, from complete free-hand to semirigid to rigid, thus freeing one hand which is often used to stabilize the endoscope. It can potentially help achieve solo surgery.


Prosthesis ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 415-427
Author(s):  
Simon Hazubski ◽  
Derya Bamerni ◽  
Andreas Otte

(1) Background: This paper presents a conceptual design for an anthropomorphic replacement hand made of silicone that integrates a sensory feedback system. In combination with a motorized orthosis, it allows performing movements and registering information on the flexion and the pressure of the fingers. (2) Methods: To create the replacement hand, a three-dimensional (3D) scanner was used to scan the hand of the test person. With computer-aided design (CAD), a mold was created from the hand, then 3D-printed. Bending and force sensors were attached to the mold before silicone casting to implement the sensory feedback system. To achieve a functional and anthropomorphic appearance of the replacement hand, a material analysis was carried out. In two different test series, the properties of the used silicones were analyzed regarding their mechanical properties and the manufacturing process. (3) Results: Individual fingers and an entire hand with integrated sensors were realized, which demonstrated in several tests that sensory feedback in such an anthropomorphic replacement hand can be realized. Nevertheless, the choice of silicone material remains an open challenge, as there is a trade-off between the hardness of the material and the maximum mechanical force of the orthosis. (4) Conclusion: Apart from manufacturing-related issues, it is possible to cost-effectively create a personalized, anthropomorphic replacement hand, including sensory feedback, by using 3D scanning and 3D printing techniques.


2018 ◽  
Vol 39 (12) ◽  
pp. 1449-1456 ◽  
Author(s):  
Bradley Campbell ◽  
Mark Carl Miller ◽  
Lance Williams ◽  
Stephen F. Conti

Background: The current work sought to quantify pronation of the first metatarsal relative to the second metatarsal and of the proximal phalanx of the great toe relative to the first metatarsal. Methods: Three-dimensional models were reconstructed from weightbearing computed tomography (CT) images (10 hallux valgus, 10 normal). The orientations of bones related to hallux valgus (HV) (ie, the phalanx, first and second metatarsals) were determined from coordinate systems established by selecting landmarks. After determining the hallux valgus and intermetatarsal angles, additional calculations geometrically determined the 3-dimensional (3D) angles using the aeronautical system of yaw-pitch-roll. The 3D geometrically determined angles were compared to the conventional plain radiographic angles. Results: HV measurements taken with CT and 3D computer-aided design (3DCAD) geometric methods were the same as measurements taken from plain radiographs (P > .05). The average pronation of the first metatarsal relative to the second metatarsal was 8.2 degrees greater in the hallux valgus group (27.3 degrees) than in the normal group (19.1 degrees) (P = .044). A regression analysis of pronation vs intermetatarsal angle (IMA) was not found to be significant. There was also no correlation between pronation of the great toe and first metatarsal in the HV group. Conclusions: The pronation angle of the first metatarsal relative to the second metatarsal between normal and hallux valgus patients was larger in HV patients but was not well correlated with the IMA. Clinical Relevance: The findings of this study indicate that pronation may need to be considered in the operative correction of hallux valgus for restoration of normal anatomy.


Author(s):  
Ethan Hilton ◽  
Wayne Li ◽  
Sunni H. Newton ◽  
Meltem Alemdar ◽  
Raghuram Pucha ◽  
...  

As Computer-Aided Design software has become more advanced, the use of hand-drawn engineering drawings has greatly diminished. This reduction has led to free-hand sketching becoming less emphasized in engineering education. While many engineering curriculums formerly included courses dedicated entirely to sketching and hand drafting, these topics are no longer addressed by most current curriculums. However, it has been observed that sketching has many benefits including improved communication in the design process, idea generation exercises, and visualizing design ideas in three-dimensional space. While isometric sketching has long been the preferred method in engineering curriculums, there are benefits of teaching perspective sketching including the creation of more realistic sketches for communication and idea generation. This paper presents the development of a perspective-based sketching curriculum and the study of how this method compares to more traditional methods of teaching sketching to students in a freshman level engineering graphics course. The results show that the perspective-based sketching method leads to equivalent gains in spatial visualization skills and final design self-efficacy as the traditional method of teaching hand sketching. While maintaining these skills, the new method also taught students additional skills. Through surveys and interviews, the students expressed that these skills would be useful to them in their future coursework and careers.


2020 ◽  
Vol 27 (2) ◽  
pp. 203-210
Author(s):  
Eric Sejor ◽  
Tarek Debs ◽  
Niccolo Petrucciani ◽  
Pauline Brige ◽  
Sophie Chopinet ◽  
...  

Objective. The aim of this study is to present a 3-dimensional (3D)-printed device to simply perform abdominal enterostomy and colostomy. Summary Background Data. Enterostomy and colostomy are frequently performed during abdominal surgery. 3D-printed devices may permit the creation of enterostomy easily. Methods. The device was designed by means of a CAD (computer-aided design) software, Rhinoceros 6 by MC Neel, and manufactured using 3D printers, Factory 2.0 by Omni 3D and Raise 3D N2 Dual Plus by Raise 3D. Colostomy was scheduled on a human cadaver and on 6 Pietrain pigs to test the device and the surgical technique. Results. The test on the cadaver showed that the application of the device was easy. Test on porcine models confirmed that the application of the device was also easy on the living model. The average duration of the surgical procedure was 32 minutes (25-40 minutes). For the female pigs, return to full oral diet and recovery of a normal bowel function was observed at postoperative day 2. The device fell by itself on average on the third day. Until day 10, when euthanasia was practiced, the stoma mucosa had a good coloration indicating a perfect viability of tissues. No complications were observed. Conclusions. This is the first study that describes the use of a 3D-printed device in abdominal surgery. End-type colostomy using a 3D-printed device can be safely and easily performed in an experimental porcine model, without postoperative complications. Further studies are needed to evaluate its utility in the clinical setting.


Author(s):  
Jean-Pierre Chavoin ◽  
Elise Lupon ◽  
Benjamin Moreno ◽  
Pierre Leyx ◽  
Jean-Louis Grolleau ◽  
...  

Abstract Background Calf shape is an essential aesthetic parameter of the leg, and calf atrophy can lead to complex problems. The functional consequences of calf atrophy are generally moderate. Prefilled silicone gel implants represent the vast majority of currently placed prostheses, but this technique does not ensure optimal adaptation of the implant shape due to loss of volume. Objectives The aim of this study was to describe an innovative procedure for correcting acquired calf atrophy based on 3-dimensional (3D) modeling. Methods The study involved 22 patients treated for calf atrophy caused by illness. Implants were made with solid rubber silicone, and 3D reconstructions were created by computer-aided design based on computed tomography scans. The implants were introduced through a horizontal popliteal incision. Results Forty-one implants were placed. No cases of infection, hematoma, or compartment syndrome were encountered. We experienced 1 case of skin necrosis and 1 case of periprosthetic seroma. In addition, lipofilling was performed in 5 cases. Two patients sought to benefit from a surgical reduction in implant size. Conclusions Our innovative procedure to correct calf atrophy with custom solid rubber silicone implants produces a calf shape that better adapts to volume loss than prefilled silicone gel implants. The material maintains its shape and facilitates retrofitting of the prosthesis. There is no risk of hull formation or breakage, and the life span of the implants is limitless. This 3D computer-aided design approach has optimized our reconstructions. Level of Evidence: 4


2017 ◽  
Vol 69 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Cristian Dudescu ◽  
Laszlo Racz

AbstractThree-dimensional printing is an additive manufacturing process that allows rapid design and manufacture of complex component based on computer-aided design models. Compared with some conventional manufacturing processes, additive manufacturing part properties can depend on structural and process parameters rather than purely on material properties. The objectives of the paper are to evaluate the tensile properties of 3D printed components produced using a commercial 3D printer by performing standard tensile tests and to assess the influence of the technological parameters upon mechanical proprieties of printed specimens, considering different printing directions, infill rates and infill patterns. The influence of raster angles is tested through the designed specimens with different transverse plane, they are printed by placing in different angle, including 0°, 30°, 45° and 90°. Specimens with an infill rate varying from 20% to 100% and six different infill patterns has been tested.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Sign in / Sign up

Export Citation Format

Share Document